Search Results

You are looking at 21 - 30 of 134 items for :

  • "Banach space" x
  • All content x
Clear All

Summary We introduce and study a system of variational inclusions involving H-accretive operators in Banach spaces. By using the resolvent operator technique associated with an H-accretive operator, we prove the existence and uniqueness of solution for the system of variational inclusions involving H-accretive operators and construct a new iterative algorithm to approximate the unique solution.

Restricted access

Abstract  

Given a field of independent identically distributed (i.i.d.) random variables

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\left\{ {X_{\bar n} ;\bar n \in \aleph ^d } \right\}$$ \end{document}
indexed by d-tuples of positive integers and taking values in a separable Banach space B, let
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$X_{\bar n}^{(r)} = X_{\bar m}$$ \end{document}
is the r-th maximum of
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\left\{ {\left\| {X_{\bar k} } \right\|;\bar k \leqq \bar n} \right\}$$ \end{document}
and let
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$^{(r)} S_{\bar n} = S_{\bar n} - \left( {X_{\bar n}^{(1)} + \cdots + X_{\bar n}^{(r)} } \right)$$ \end{document}
be the trimmed sums, where
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$S_{\bar n} = \sum\nolimits_{\bar k \leqq \bar n} {X_{\bar k} }$$ \end{document}
. This paper aims to obtain a general law of the iterated logarithm (LIL) for the trimmed sums which improves previous works.

Restricted access

Abstract  

We study the existence of complemented copies of c 0 in certain Banach spaces of bounded linear operators and apply our results to spaces of bounded vector valued measures.

Restricted access