Search Results

You are looking at 21 - 30 of 62 items for :

  • "Numerical study" x
  • All content x
Clear All

In precise geoid modelling the combination of terrestrial gravity data and an Earth Gravitational Model (EGM) is standard. The proper combination of these data sets is of great importance, and spectral combination is one alternative utilized here. In this method data from satellite gravity gradiometry (SGG), terrestrial gravity and an EGM are combined in a least squares sense by minimizing the expected global mean square error. The spectral filtering process also allows the SGG data to be downward continued to the Earth’s surface without solving a system of equations, which is likely to be ill-conditioned. Each practical formula is presented as a combination of one or two integral formulas and the harmonic series of the EGM.Numerical studies show that the kernels of the integral part of the geoid and gravity anomaly estimators approach zero at a spherical distance of about 5°. Also shown (by the expected root mean square errors) is the necessity to combine EGM08 with local data, such as terrestrial gravimetric data, and/or SGG data to attain the 1-cm accuracy in local geoid determination.

Restricted access

The problem of handling outliers in a deformation monitoring network is of special importance, because the existence of outliers may lead to false deformation parameters. One of the approaches to detect the outliers is to use robust estimators. In this case the network points are computed by such a robust method, implying that the adjustment result is resisting systematic observation errors, and, in particular, it is insensitive to gross errors and even blunders. Since there are different approaches to robust estimation, the resulting estimated networks may differ. In this article, different robust estimation methods, such as the M-estimation of Huber, the “Danish”, and the L 1 -norm estimation methods, are reviewed and compared with the standard least squares method to view their potentials to detect outliers in the Tehran Milad tower deformation network. The numerical studies show that the L 1 -norm is able to detect and down-weight the outliers best, so it is selected as the favourable approach, but there is a lack of uniqueness. For comparison, Baarda’s method “data snooping” can achieve similar results when the outlier magnitude of an outlier is large enough to be detected; but robust methods are faster than the sequential data snooping process.

Restricted access

The Earth topographic masses are compensated by an isostatic adjustment. According to the isostatic hypothesis a mountain is compensated by mass deficiency beneath it, where the crust is floating on the viscous mantle. For study of the impact of the compensating mass on the topographic mass a crustal thickness (Moho boundary) model is needed. A new gravimetric-isostatic model to estimate the Moho depth, Vening Meinesz-Moritz model, and two well-known Moho models (CRUST2.0 and Airy-Heiskanen) are used in this study. All topographic masses cannot be compensated by simple isostatic assumption then other compensation mechanism should be considered. In fact small topographic masses can be supported by elasticity of the larger masses and deeper Earth’s layers. We discuss this issue applying spatial and spectral analyses in this study. Here we are going to investigate influence of the crustal thickness and its density in compensating the topographic potential. This study shows that the compensating potential is larger than the topographic potential in low-frequencies vs. in high-frequencies which are smaller. The study also illustrates that the Vening Meinesz-Moritz model compensates the topographic potential better than other models, which is more suitable for interpolation of the gravity field in comparison with two other models. In this study, two methods are presented to determine the percentage of the compensation of the topographic potential by the isostatic model. Numerical studies show that about 75% and 57% of the topographic potentials are compensated by the potential beneath it in Iran and Tibet. In addition, correlation analysis shows that there is linear relation between the topographic above the sea level and underlying topographic masses in the lowfrequencies in the crustal models. Our investigation shows that about 580±7.4 metre (in average) of the topographic heights are not compensated by variable the crustal root and density.

Restricted access

variations on electrical behavior of a neocortical neuron model . Acta Biol. Hung. 65 , 379 – 384 . 6. Shirahata , T. ( 2015 ) Numerical study of a mathematical

Restricted access

M. Zhan 2009 Numerical study on deformation behaviors of thin-walled tube NC bending with large diameter and small bending radius Computational Materials Science

Restricted access

–202. Dunai L. Ádány S., Kovács N., Calado L. Experimental and numerical studies on bolted connections of steel frames under seismic actions , Final Technical Report, Joint Research between Budapest University of Technology and Economics and Technical

Restricted access

References [1] Howell R. , Qin N. , Edwards J. , et al. ( 2009 ), Wind tunnel and numerical study of a small VAWT . Renewable

Open access

. A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k-ε turbulence model , Atmospheric Environment , Vol. 38 , No. 19 , 2004 , pp. 3039 – 3048 . [13

Restricted access

-concrete interaction in dissipative zones of frames: II, Numerical study , Steel and Composite Structures , Vol. 15 , No. 3 , 2013 , pp. 323 – 348 . [7] Ohsaki M

Restricted access

Spencer, H. G. and Marks, R. W. (1988): The maintenance of single-locus polymorphism. I. Numerical studies of a viability selection model. Genetics 120 :605-613. The maintenance of single-locus polymorphism. I. Numerical studies

Restricted access