Search Results

You are looking at 21 - 30 of 213 items for :

  • "monotonicity" x
  • All content x
Clear All

For a large class of arithmetic functions f, it is possible to show that, given an arbitrary integer κ ≤ 2, the string of inequalities f(n + 1) < f(n + 2) < … < f(n + κ) holds for in-finitely many positive integers n. For other arithmetic functions f, such a property fails to hold even for κ = 3. We examine arithmetic functions from both classes. In particular, we show that there are only finitely many values of n satisfying σ2(n − 1) < σ2 < σ2(n + 1), where σ2(n) = ∑d|n d 2. On the other hand, we prove that for the function f(n) := ∑p|n p 2, we do have f(n − 1) < f(n) < f(n + 1) in finitely often.

Restricted access