Search Results

You are looking at 21 - 30 of 2,210 items for :

  • "treatment" x
  • Chemistry and Chemical Engineering x
  • All content x
Clear All

treatment stabilization must be used ( Bengoechea et al., 2010 ). Hen egg yolk is an ideal example of natural supramolecular assemblies of lipids and proteins with different organization levels. These assemblies are mainly due to interactions between

Open access
Progress in Agricultural Engineering Sciences
Authors: Tamás Zsom, Petra Polgári, Lien Phuong Le Nguyen, Géza Hitka, and Viktória Zsom-Muha

materials, or ethylene scavenging agents) could serve effectively for these purposes. 1-MCP (1-methyl-cyclopropene) application as a novel postharvest treatment ( Blankenship & Dole, 2003 ) is proved to be effective against undesired postharvest ripening of

Open access

Abstract  

Mössbauer effect was used for the characterization of the radioactive waste treatment products, e.g. precipitate formed during the treatment of LLAW (Low Level Active Waste) using iron compounds and their conditioned matrix obtained by cementation.

Restricted access

85 178 183 Antal, T. (2013) Effects of different pre-treatments on drying characteristics and quality of freeze dried sour cherry. Food Science

Restricted access

Abstract  

Radiation treatment with gamma-rays was used to improve the biodegradability of EDTA that is known to be a non-biodegradable substance. The effect of metal ions and catalysts on the treatment of EDTA was studied first. The removal of EDTA was definitely decreased in the presence of metal ions such as Cr(III), Cd(II), Pb(II) and Cu(II) at doses greater than 3 kGy. The addition of a TiO2

Restricted access

Abstract  

The possibility of applying chemical treatment prior to evaporation was discussed in the present work. Using titanium hydroxide-cobalt ferrocyanide as coprecipitants allows fixation of high percentage of radioactive nuclides present (e.g. Cs 98%, Ru 90%, Sb 95%, Ce 98%, Am 95% and Pu 95%). Hence using such simple chemical separation before evaporation improves the process and leads to several advantages, e.g. raising the decontamination factor, reducing radioactive aerosol production and solving the problem of medium active waste treatment by adding the chemically precipitated solids to the high-active waste and the supernatant to the low-active waste, are examples for these advantages.

Restricted access

Summary  

In order to evaluate the use of gamma-ray treatment as a pretreatment to conventional biological methods, the effects of gamma-irradiation on biodegradability (BOD5/COD) of textile and pulp wastewaters were investigated. For all wastewaters studied in this work, the efficiency of treatment based on TOC removal was insignificant even at an absorbed dose of 20 kGy. However, the change of biodegradability was noticeable and largely dependent on the chemical property of wastewaters and the absorbed dose of gamma-rays. For textile wastewaters, gamma-ray treatment increased the biodegradability of desizing effluent due to degradation of polymeric sizing agents such as polyvinyl alcohol. Interestingly, the weight-loss showed the highest value of 0.97 at a relatively low dose of 1 kGy. This may be caused by the degradation of less biodegradable ethylene glycol prior to terephthalic acid decomposition. For pulp wastewater, the gamma-ray treatment did not improve the biodegradability of cooking and bleaching of C/D effluents. However, the biodegradability of bleaching E1 and final effluents was abruptly increased up to 5 kGy then slowly decreased as the absorbed dose was increased. The initial increase of biodegradability may be induced by the decomposition of refractory organic compounds such as chlorophenols, which are known to be the main components of bleaching C/D and final effluents.

Restricted access

381 398 Makó, A. & Hernádi, H. , 2010. Comparative evaluation of different pre-treatment methods applied during the PSD analysis of soils. (In Hungarian) In

Restricted access

Summary  

The differences on the thermal behaviour (DTG-DTA) of antigorite sample measured before and after sonication have been studied. Sonication treatment produces negligible changes in the structure of the material but substantial textural modifications. These modifications produce changes in the thermal behaviour of antigorite sample. Thus, it has been observed a decrease in the dehydroxylation temperature as measured by DTG and DTA effects. For sonication treatments longer than 20 h, two new effects of dehydroxylation are observed, the intensity of these two new effects increases with the sonication time showing a modification in the release of structural OH. It has been also observed that the formation of forsterite takes place simultaneously with the dehydroxylation of the antigorite. The high temperature exothermic effect is due to the recrystallization of forsterite and not to the formation of forsterite as traditionally assumed. Modifications in the thermal dehydroxylation of antigorite observed in this study are related to the pronounced decrease in particle size obtained by sonication.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: Rafael de Pádua Ferreira, Solange Sakata, Fernando Dutra, Patricia Di Vitta, Maria Taddei, Maria Bellini, and Júlio Marumo

Abstract  

Waste management plays an important role in radioactive waste volume reduction as well as lowering disposal costs and minimizing the environment-detrimental impact. The employment of biomass in the removal of heavy metals and radioisotopes has a significant potential in liquid waste treatment. The aim of this study is to evaluate the radioactive waste treatment by using three different bacterial communities (BL, BS, and SS) isolated from impacted areas, removing radioisotopes and organic compounds. The best results were obtained in the BS and BL community, isolated from the soil and a lake of a uranium mine, respectively. BS community was able to remove 92% of the uranium and degraded 80% of tributyl phosphate and 70% of the ethyl acetate in 20 days of experiments. BL community removed 81% of the uranium and degraded nearly 60% of the TBP and 70% of the ethyl acetate. SS community collected from the sediment of São Sebastião channel removed 76% of the uranium and 80% of the TBP and 70% of the ethyl acetate. Both americium and cesium were removed by all communities. In addition, the BS community showed to be more resistant to radioactive liquid waste than the other communities. These results indicated that the BS community is the most viable for the treatment of large volumes of radioactive liquid organic waste.

Restricted access