Search Results

You are looking at 41 - 50 of 90 items for :

  • Refine by Access: All Content x
Clear All

Abstract  

The present work tries to emphasize the effect of acid/basis properties of montmorillonite type clays by ion exchange with cations of different natures. The acidity and basicity measuring was made by thermo programated desorption (TPD)1,2, using ammonia like basis agent and carbon dioxide like acid agent. With TPD method we can determine acid/basis proprietes by measuring of the quantity of the ammonia and carbon dioxide termodesorbed. Clays are crystalline aluminosilicates, similar with the zeolyts, who presents the property of ion exchanging. That propriety can be applicated for pollutants cations from aquatic solutions. Ion exchanging propriety depends of a lot of factors: the cation nature, the valence and the ionic ray of the cation present in the impregnated solution. That's an advantage for depollution process of heavy metals by fixing of these metals by montmorillonite structure. By using TPD metod we can obtaine a caracteristic diagram.

Restricted access

Abstract  

Temperature-programmed desorption coupled with mass spectrometer as a detector (TPD), IR and 13C NMR measurements are used to study the adsorption of n-hexane on hydrated HZSM-5 and NH4ZSM-5 zeolites. The 13C NMR measurements show that n-hexane can access the pore structure of ZSM-5 zeolites previously saturated with water. TPD spectra of n-hexane are monitored in the temperature region 50–300C, in the case of fully or partially hydrated samples; two-stage desorption of n-hexane is found. Simultaneous desorption of water and n-hexane in the same temperature region are found, in all investigated samples.

Restricted access

Abstract  

DSC and TG-DTA techniques were used to investigate micro-sized silver powder particles and the adsorption of ethyl cellulose on these particles in a solution of ethyl acetate. The apparent specific heat of the silver particles was determined, and the kinetics of temperature-programmed desorption (TPD) of these adsorbed silver particles was investigated. Results show that the apparent specific heat and desorption kinetic parameters obtained by thermal analysis techniques could be used to characterize certain physico-chemical properties of such a particulate system.

Restricted access

H, Li, Na, Cs, NH4, Mg and Al-ZSM 5 zeolites and H and NH4-mordenites were studied by DTA, X-ray diffraction, TPD and adsorption measurements. The stability relating to dealumination and structure destruction depends on the nature of the cation.

Restricted access

Abstract  

Thermal evacuation of a surfactant template from pure siliceous MCM-41 and MCM-41 containing aluminium in hydrogen flow was investigated. Micelle templated MCM-41 were prepared using hexadecyltrimethylammonium bromide (CTAB). The products of thermal surfactant degradation outside and inside pores were identified at various temperatures using 13C solid-state nuclear magnetic resonance (NMR) spectroscopy, gas chromatography coupled with mass spectrometer (GC-MS) and temperature programmed desorption coupled with mass spectrometer (TPD-MS). The GC-MS and 13C MAS NMR results obtained from this study provide an insight into the mechanism of surfactant transformation during MCM-41 synthesis on molecular level.

Restricted access

Abstract  

The performances of selective catalytic reduction (SCR) by CO/H2 over two Pd/TiO2/Al2O3 catalysts prepared from PdCl2 and Pd(NO3)2 precursors were compared. The catalytic activities (NOx conversion and N2 yield) were measured on these two catalysts. The catalytic properties of the prepared catalysts were studied by various characterization techniques such as BET, CO-chemisorption, TEM, XPS, and TPD. The Pd precursors influenced the Pd particle distribution, resulting in different catalytic activities.

Restricted access

The aldol condensation of methyl acetate with formaldehyde to form methyl acrylate was studied in a continuous-flow reactor using a series of supported cesium basic catalysts with commercially available materials (ZSM-5, SiO2, and γ-Al2O3) as carriers prepared by vacuum impregnation. The catalysts were characterized by N2 adsorption-desorption, Fourier transform-infrared (FT-IR), X-ray diffraction (XRD), and temperature-programmed desorption of ammonia and carbon dioxide (NH3/CO2-TPD). The obtained results indicated that the selectivity of methyl acrylate was mainly influenced by the properties of supports. The formation of acetone is approximately proportional to the acidity of supports. The basicity of the catalysts was favorable to the formation of methyl acrylate according to the results of CO2-TPD. The hydrolysis of methyl acetate was inhibited over Cs-HT-SiO2 prepared by SiO2 after hydrothermal treatment. Furthermore, SiO2 with the large mesoporous volume is superior to other supports, which shows the best catalytic activity for the aldol condensation reaction. On the other hand, the catalytic performance of zeolite basic catalysts was strongly influenced by the effect of reactant diffusion. Internal diffusion resulted in the increase of conversion of methyl acetate with increasing specific surface area, while the conversion of methyl acetate decreased with increasing the weight hourly space velocity (WHSV) due to the external diffusion.

Restricted access

Room-temperature interaction of n-hexane with ZSM-5 zeolites

Microcalorimetric and temperature-programmed desorption studies

Journal of Thermal Analysis and Calorimetry
Authors: V. Rac, Vesna Rakić, S Gajinov, Vera Dondur, and Aline Auroux

Abstract  

In this work, room temperature interaction of n-hexane with HZSM-5 (Si/Al=20) and ion-exchanged samples containing one (CuZSM-5, FeZSM-5 and MnZSM-5) or two transition-metal cations (Fe,CuZSM-5; Cu,MnZSM-5 and Fe,MnZSM-5) was studied by microcalorimetry and TPD methods. Both differential heats and the amounts of n-hexane adsorbed per one unit cell were quantitatively determined. Higher heats of adsorption and higher amounts of adsorbed gas were found for ion-exchanged samples than for HZSM-5. The experiments of n-hexane adsorption on hydrated samples were also performed. The amounts of n-hexane adsorbed on hydrated ZSM-5 were lower in comparison with dehydrated samples, while the energies of interaction were similar.

Restricted access

Abstract  

SO4 2−/TiO2–MxOy (M = Zr, Ce, La) were prepared by the precipitation-impregnation method and characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FT-IR), and temperature-programmed desorption (NH3-TPD). Catalytic activities were evaluated in the acetalization of 1,3-propanediol (1,3-PD) with acetaldehyde and hydrolysis of 2-methyl-1,3-dioxane (2MD). SO4 2−/TiO2–ZrO2 (STZ) exhibited the best catalytic activity both in the acetalization and hydrolysis. With the molar ratio of Zr4+/Ti4+ = 1:4, the highest yields were 96.45% in 3 h and 93.68% of 2MD hydrolyzed in 18 h, in contrast to the yields lower than 60% by using other superacids. These results are consistent with the strongest acidity of the superacid containing Zr4+ among prepared superacids containing other cations.

Restricted access

Abstract  

Controlled-rate thermodesorption (CRTD) spectra are obtained by adjusting the heating rate in such a way that the rate of desorption can be constant. A quantitative analysis of the obtained spectra is presented, based on application of the statistical rate theory of interfacial transport (SRTIT) to describe both adsorption and desorption kinetics. The SRTIT approach relates the rates of adsorption and desorption to the chemical potentials of the adsorbate in the gaseous and in the adsorbed phases. This quantitative analysis of the CRTD spectra yields the condensation approximation for the actual adsorption energy distribution. For the purpose of illustration, an analysis is made of water desorption from a synthetic apatite mineral under CRTD and classical TPD conditions. The influence of the adsorption and desorption rates is also discussed.

Restricted access