Search Results

You are looking at 51 - 60 of 100 items for :

  • "monotonicity" x
  • Mathematics and Statistics x
  • All content x
Clear All

. [4] Cruz-Uribe , David 1996 Piecewise monotonic doubling measures Rocky Mountain J. Math. 26 545 – 583 10.1216/rmjm/1181072073

Restricted access

, S. P. , Ultimate generalization to monotonicity for uniform convergence of trigonometric series , http://arxiv.org/abs/arXiv:math.CA/0611805v1 November 27, 2006, preprint. [12

Restricted access

Abstract  

The Hirsch index is a number that synthesizes a researcher’s output. It is defined as the maximum number h such that the researcher has h papers with at least h citations each. Woeginger (Math Soc Sci 56: 224–232, 2008a; J Informetr 2: 298–303, 2008b) suggests two axiomatic characterizations of the Hirsch index using monotonicity as one of the axioms. This note suggests three characterizations without adopting the monotonicity axiom.

Restricted access

spaces Pacific J. Math. 81 371 – 377 . [8] Gao , Y. Z. , Qu , H. Z. , Wang , S. T. 2007 A note on monotonically normal spaces Acta Math. Hungar. 117 175 – 178 10.1007/s10474

Restricted access

References [1] Bessenyei , M. , Páles , Zs. 2010 Characterization of higher order monotonicity via integral inequalities Proc. Roy. Soc. Edinburgh Sect. A 140 723 – 736 10

Restricted access

. and V ural , C. , Every monotonically normal Čech-complete space is subcompact , Topology Appl. , 176 ( 2014 ), 35 – 42 . [16] T kachuk , V. V. , A C p

Restricted access

. , Monotonicity properties of determinants of special functions , Constr. Approx. , 26 ( 2007 ), 1 – 9 . [15] K almykov , S. I. and K arp , D. B. , Log-convexity and log

Restricted access

B anaś , J. and R zepka , B. , Monotonic solutions of a quadratic integral equation of fractional order , J. Math. Anal. Appl. , 332 ( 2007 ), 1371 – 1379 . 18 B

Restricted access

] Cecchi , M. , Marini , M. , Villari , G. 1989 On the monotonicity property for a certain class of second order differential equations J. Differential Equations 82 15 – 27 10.1016/0022-0396(89)90165-4 . [9

Restricted access

) ( 2018 ), 211 – 226 . [4] Aktaş , İ. , Baricz , Á. and Singh , S. , Geometric and monotonic properties of hyper-Bessel functions , Ramanujan J. , 51 ( 2 ) ( 2020 ), 275 – 295 . [5] Aktaş , İ. , Baricz , Á. and Yaámur , N. , Bounds

Restricted access