Search Results

You are looking at 61 - 70 of 570 items for :

  • "nanoparticle" x
  • All content x
Clear All

, S.H. , Kang , C.B. & Ko , S. ( 2011 ): Preparation of size-controlled bovine serum albumin (BSA) nanoparticles by a modified desolvation method . Food Chem., 127 , 1892 – 1898

Restricted access

Abstract  

The enthalpies of precipitation of ZnS nanoparticles within water containing reversed micelles of sodium bis(2-ethylhexyl) solfosuccinate, L-α phosphatidylcholine, tetraethyleneglycol-mono-n-dodecyl ether and didodecyldimethylammonium bromide as a function of the molar concentration ratioR (R=[water]/[surfactant]) were measured by calorimetric technique. The results indicate that the energetic state of ZnS nanoparticles confined in the aqueous core of the reversed micelles is different from that in bulk water. Effects due to nanoparticle size, adsorption of HS ions on the nanoparticle surface and interactions between nanoparticles and water/surfactant interfaces are discussed.

Restricted access

Synthesis of silver nanoparticles (NPs) in an impinging jet reactor (IJR) was investigated due to its unique properties of efficient mixing and lack of channel walls which avoid fouling. Silver NPs were formed at room temperature by reducing silver nitrate with sodium borohydride in the presence of sodium hydroxide. Two types of ligand were used to stabilize the NPs, trisodium citrate, and polyvinyl alcohol (PVA). Weber number, the ratio between inertial forces and surface tension forces, is used to characterize flow in impinging jets. Flow regimes were investigated forWeber numbers in the range of 13–176. A liquid sheet/chain regime was identified at lowerWeber numbers (<90), and an unstable rim structure was identified at higherWeber numbers (>90). Mixing time was found to be in the range 1–7ms, using theVillermaux—Dushman reaction system and interaction by exchange with the mean mixing (IEM) model. Fastest mixing occurred at Weber number ca. 90. Using trisodium citrate as a ligand, NP size decreased from 7.9 ± 5.8 nm to 3.4 ± 1.4 nm when flow rate was increased from 32 mL/min to 72 mL/min using 0.5 mm jets, and from 6.4 ± 3.4 nm to 5.1 ± 4.6 nm when flow rate was increased from 20 mL/min to 32 mL/min using 0.25 mm jets. Using PVA as a ligand, NP size decreased from 5.4 ± 1.6 nm to 4.2 ± 1.1 nm using 0.5 mm jets and stayed relatively constant between 4.3 ± 1 nm and 4.7 ± 1.3 nm using 0.25 mm jets. In general, the size of the NPs decreased when mixing was faster.

Open access

Abstract  

Changes in the thermal conductivities of paraffin and mono ethylene glycol (MEG) as a function of β-SiC nanoparticle concentration and size was studied. An enhancement in the effective thermal conductivity was found for both fluids (i.e., both paraffin and MEG) upon the addition of nanoparticles. Although an enhancement in thermal conductivity was found, the degree of enhancement depended on the nanoparticle concentration in a complex way. An increase in particle-to-particle interactions is thought to be the cause of the enhancement. However, the enhancement became muted at higher particle concentrations compared to lower ones. This phenomenon can be related to nanoparticles interactions. An improvement in the thermal conductivities for both fluids was also found as the nanoparticle size shrank. It is believed that the larger Brownian motion for smaller particles causes more particle-to-particle interactions, which, in turn, improves the thermal conductivity. The role that the base-fluid plays in the enhancement is complex. Lower fluid viscosities are believed to contribute to greater enhancement, but a second effect, the interaction of the fluid with the nanoparticle surface, can be even more important. Nanoparticle-liquid suspensions generate a shell of organized liquid molecules on the particle surface. These organized molecules more efficiently transmit energy, via phonons, to the bulk of the fluid. The efficient energy transmission results in enhanced thermal conductivity. The experimentally measured thermal conductivities of the suspensions were compared to a variety of models. None of the models proved to adequately predict the thermal conductivities of the nanoparticle suspensions.

Restricted access

lunar samples from Apollo 11, 12 and 16 missions were personally examined. The thickness of the adsorbed liquid layers (adsorption capacity) and adsorbate–adsorbente interactions (desorption energy) on the lunar nanoparticles can be assessed by means of

Open access
Journal of Thermal Analysis and Calorimetry
Authors: Yuko Ichiyanagi, Yuki Moro, Hikaru Katayanagi, Shinji Kimura, Daiki Shigeoka, Tomoyuki Hiroki, and Toshiyuki Mashino

Abstract  

Magnetic nanoparticles were prepared by a wet chemical method. Precursors of MFe2O4 (M = Co, Mn, Zn) were prepared from a mixture of metal chloride and metasilicate nonahydrate aqueous solutions. The precipitates obtained in the wet chemical method were calcined to obtain MFe2O4 nanoparticles encapsulated by amorphous SiO2. The blocking temperatures T B’s were between 20 and 320 K, in this temperature range, the anisotropy energy of the particles decreased below their thermal energy. T B increased with the particle size. In order to clarify the nanoparticle formation process, differential thermal analysis and thermogravimetric (TG-DTA) measurements were performed for the as-prepared samples.

Restricted access

Abstract  

Human serum albumin (HSA) adsorbed onto silica nanoparticles modified by 3-aminopropyltriethoxysilane (APTES) and polyethyleneimine (PEI) was investigated by differential scanning calorimetry, IR spectroscopy, and photon correlation spectroscopy. The structural alterations of the protein molecules induced from adsorption process were estimated on the basis of temperatures of denaturation transition (T d) of the protein in free (native) and adsorbed form. It was found that adsorption of the protein onto the APTES-modified silica nanoparticles results in an increase in the temperature of denaturation transition from 42 to 47.4 °C. HSA adsorbed onto the PEI-modified silica nanoparticles unfolds extensively.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Stéphanie Etienne, C. Becker, D. Ruch, B. Grignard, G. Cartigny, C. Detrembleur, C. Calberg, and R. Jerome

Abstract  

Silica nanoparticles of various sizes have been incorporated by melt compounding in a poly(methyl methacrylate) (PMMA) matrix to enhance its thermal and mechanical properties. In order to improve nanoparticles dispersion, PMMA grafted particles have been prepared by atom transfer radical polymerization (ATRP) from well-defined silica nanoparticles. This strategy was expected to ensure compatibility between both components of the PMMA nanocomposites. TEM analysis have been performed to evaluate the nanosilica dispersion whereas modified and non-modified silica/PMMA nanocomposites thermal stability and mechanical properties have been investigated by both thermogravimetric and dynamical mechanical analysis.

Restricted access

Summary Recently, we have reported a noble method of preparing Ag/Rh bimetallic nanoparticles with a pseudo-core/shell structure. We simply mix the dispersions of poly(N-vinyl-2-pyrrolidone)(PVP)-protected Ag and Rh nanoparticles in solution at room temperature. We found that the mixture of dispersions forms bimetallic nanoparticles in a pseudo-core/shell structure on standing. We call this process the ‘self-assembling’ or ‘self-organizing’. In this study we seek for a thermodynamic driving force for this process by determining the enthalpy of the interaction among three pairs of nanoparticles by isothermal titration calorimetry (ITC). The results indicate that the interaction between each pair is strongly exothermic, and that among the pairs studied here the strength of the exothermic interaction is in the order of Ag/Pt<Ag/Pd<Ag/Rh.

Restricted access

This paper describes the method of onion-like nanoparticles synthesis in a microflow. As the core of a material, platinum nanoparticles were used. The first shell consists of metallic palladium, and the second one is metallic gold, respectively. The synthesis of onion-like nanostructure was performed using microflow reactors system, which consists of 3 independent elements. As the reducing agent of precious metals ions, vitamin C was used. To prevent NPs from the aggregation, a polyvinyl alcohol as the stabilizing agent was applied.

Restricted access