Search Results

You are looking at 61 - 70 of 314 items for :

  • "recrystallization" x
  • All content x
Clear All

A simple and sensitive method for separation and quantitative determination of antidiabetic drugs in pharmaceutical preparations has been established and validated. Commercial formulations of five antidiabetic drugs (metformin, pioglitazone, rosiglitazone, glibenclamide, and gliclazide) were chosen for the studies. The compounds were extracted, isolated, purified, recrystallized, and characterized by measurement of melting point, λ max , and IR. Quantitative determination was performed by HPLC, TLC, and column chromatography supplemented with UV spectrophotometry. Two of the combinations, metformin + pioglitazone and metformin + gliclazide, were separated by open-column chromatography. Detection was by UV spectrophotometry in HPLC and by use of iodine vapor in TLC.

Restricted access

The polymorphic forms II and III of paracetamol were obtained by melting the marketed form I. Under the melting and cooling conditions used, it was possible to obtain forms I, II and III. The recrystallization conditions and the physical properties of forms II and III were investigated by means of various techniques: thermomicroscopy, DSC analysis, infrared microspectrometry and X-ray powder diffraction at room temperature and as a function of temperature. Form III was found to be very unstable. However, its formation seems to be an important intermediate step in the preparation of form II.

Restricted access

Abstract  

The multiple melting behaviour of isothermally crystallized bulk poly(trimethylene terephthalate) (PTT) observed using DSC has been correlated to the total depolarized light intensity (DLI) of thin films using hot-stage polarized light optical microscopy. The observation of partial melting, recrystallization and final melting in the DSC is correlated to the observation of the partial decrease, sudden increase and final decrease in DLI under the same heating conditions. Integration of real-time visible spectra of the transmitted light was used to separate the effects of retardation from pure birefringence of the colorful spherulitic thin-film PTT samples. The correlation of the results from these two methods has demonstrated clearly that the observed DSC multiple melting behaviour of this particular polymer is the illustrated effect of a process of continuous partial melting/recrystallization/final melting in the material during thermal analysis. The observed thermal behaviour of these metastable spherulitic materials is a complex function of their thermal history including crystallization temperature and anneal conditions, including scanning rate during thermal analysis.

Restricted access

The characteristics of crystallization, melting and spherulitic growth of a random propylene copolymer (PRC) containing small amount of ethylene were studied in the presence of a selective Β-nucleating agent (calcium pimelate). It was established that the products of isothermal and non-isothermal crystallization are very rich in Β-modification but have mixed polymorphic composition. The formation of α-modification may be attributed to Βα-transition on the surface of growing Β-spherulites resulting in αΒ-twin-spherulites. During melting of PRC of Β-modification, the characteristics observed with Β-nucleated propylene homopolymers, namely, a Βα-recrystallization of recooled samples and separated melting of non-recooled samples (i.e. the melting memory effect), as well as a ΒΒ-recrystallization leading to a perfection of the structure within the Β-modification, are also demonstrated. The disturbance of regularity of the polymer chain highly reduces the tendency to Β-crystallization. In contrast to the observations with propylene homopolymers, the growth rate of α-modification (G α) is higher than that of Β-modification (G β) and no critical crossover temperature can be found (T(Βα)=413 K) below whichG α>G β. The experimental results show that a partial disturbance of chain regularity by incorporation of comonomer units considerably reduces the tendency to Β-crystallization.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: F. Giordano, A. Rossi, R. Bettini, A. Savioli, A. Gazzaniga, and Cs. Novák

Abstract  

The thermal behavior of binary mixtures of paracetamol and a polymeric excipient (microcrystalline cellulose, hydroxypropylmethylcellulose and cross-linked poly(vinylpyrrolidone)) was investigated. The physical mixtures, ranging from 50 to 90% by mass of drug, were submitted to a heating-cooling-heating program in the 35–180C temperature range. Solid-state analysis was performed by means of differential scanning calorimetry (DSC), hot stage microscopy (HSM), micro-Fourier transformed infrared spectroscopy (MFTIR), and scanning electron microscopy (SEM). The polymeric excipients were found to address in a reproducible manner the recrystallization of molten paracetamol within the binary mixture into Form II or Form III. The degree of crystallinity of paracetamol in the binary mixtures, evaluated from fusion enthalpies during the first and second heating scans, was influenced by the composition of the mixture, the nature of the excipient and the thermal history. In particular, DSC on mixtures with cross-linked poly(vinylpyrrolidone) and hydroxypropylmethylcellulose with drug contents below 65 and75%, respectively, evidenced the presence only of amorphous paracetamol after the cooling phase. Microcrystalline cellulose was very effective in directing the recrystallization of molten paracetamol as Form II.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: A. Fave, M. Bouchaour, A. Kaminski, S. Begrger, A. Ould-Abbas, and N. Chabane Sari

Abstract  

The fabrication of solar cells based on the transfer of a thin silicon film on a foreign substrate is an attractive way to realise cheap and efficient photovoltaic devices. The aim of this work is to realise a thin mono-crystalline silicon film on a double porous silicon layer in order to detach and transfer it on mullite. The first step is the fabrication of a double porous silicon layer by electrochemical anodisation using two different current densities. The low current leads to a low porosity layer and during annealing, the recrystallisation of this layer allows epitaxial growth. The second current leads to a high porosity which permits the transfer on to a low cost substrate. Liquid Phase Epitaxy (LPE) performed with indium (or In+Ga) in the temperature range of 950–1050C leads to almost homogeneous layers. Growth rate is about 0.35 μm min−1. Crystallinity of the grown epilayer is similar on porous silicon and on single crystal silicon. In this paper, we focus on the realisation of porous silicon sacrificial layer and subsequent LPE growth.

Restricted access

Abstract  

Raw and thermally treated sepiolites from the Mantoudi area, Euboea, Greece, were investigated by means of X-ray diffraction (XRD) in combination with thermo-gravimetric analysis (TG/DTG) and differential thermal analysis (DTA), as well as Fourier transform (FTIR) spectroscopy, in order to study the collapse of the sepiolite structure with increasing temperature. The main mineral constituent (>95%) is a well crystallized sepiolite. Quartz and dolomite occur in minor amounts. Calcination of the samples was carried out up to 350, 720 and 820°C, for 2 h, and ‘sepiolite dihydrite’, ‘sepiolite anhydrite’ and ‘enstatite’ were formed, respectively, as magnesium co-ordinated water and octahedrically co-ordinated hydroxyl groups, are removed and the dehydroxylated phase recrystallize to enstatite (MgSiO3). These structural and textural changes play an important role to the properties and uses of the studied sepiolites.

Restricted access

The results of isothermal calorimetric determination of the stored energy for 99.999% pure polycrystalline rolled silver are reported. The stored energy values were found to be linearly related to the recrystallization temperature. An explanation of this effect is given in terms of the specific heat difference between the rolled and annealed states.

Restricted access

Abstract  

An oestrogen derivative 3,17-a-oestradiolyl propyl 1,4,8,11-tetraazacyclotetradecanyl-1-(4-methylbenzoic acid)ester (ESTCPTA) that is 3,17-a-oestradiolyl propinol coupled to 1-(4-methylbenzoic acid)1,4,8,11-tetraazacyclotetradecane (CPTA) was synthesized in five steps. The product was purified by recrystallization in ethyl alcohol, and analysed by NMR and IR spectroscopy. ESTCPTA was labeled with 99mTc and radio thin layer chromatography (RTLC) and radio-paper electrophoresis were used to determine the radiochemical yields. Specific activity was approximately 23.7 GBq/mmol and the labeling yield was over 95%. The biodistribution studies were performed on female Albino Wistar rats. The rats were sacricified by ether narcotization at certain time intervals and the activity of the organs was counted by a gamma counter. The activity per gram tissue was calculated and time activity curves were generated.

Restricted access

Abstract  

A survey is given on the basic factor affecting the determination of90Sr in milk and bones by removal of the excess calcium by precipitation. Strong co-precipitation of calcium and strontium takes place using fuming nitric acid, potassium hexacyano-ferrate, EDTA, ethanol-ether mixture and butanol-(1) due to partial precipitation, recrystallization and adhesion processes where thepH value of the environment plays an improtant role. The obtained results show very limited applicability of these agents for the determination of90Sr in biological materials because of low accuracy and reproducibility. This conclusion is especially valid for the method of rapid determination of90Sr with EDTA according toWelford andSutton. In this work a method is given for the determination of90Sr in milk and bones using potassium hexacyanoferrate.

Restricted access