Search Results

You are looking at 71 - 80 of 2,600 items for :

  • "Spectroscopy" x
  • Refine by Access: All Content x
Clear All

Abstract  

This study aims to investigate the performance of relatively new cerium-doped scintillators, LaCl3 and LaBr3, for gamma-ray spectroscopy. The study involved recording of detected spectra and measurement of energy resolution, as well as photo-fraction. The Monte Carlo package, GATE, was used to validate the experiments. In general, the energy resolution figures achieved were twice as good as that of NaI(Tl). In conclusion, LaBr3: Ce and LaCl3: Ce crystals have excellent energy resolution, (2.13±0.03)% and (2.92±0.04)% at 1332 keV, respectively, and comparable photo-fraction to NaI(Tl). Hence, these crystals, particularly LaBr3: Ce, have the potential to replace NaI(Tl) as the scintillator of choice for γ-ray spectroscopy.

Restricted access

Abstract  

Different iron hydroxide precipitation processes simulating radioactive waste, treatment have been investigated by Mössbauer spectroscopy at room temperature and at 80 K. Magnetic oxides (hematite or magnetite) partially affected by superparamagnetic relaxation have been observed. The crystallization degree and the particle size depend on the concentration and the addition order of chemicals. Much smaller particles were precipitated with Ca(OH)2 than with NaOH as neutralization reagent.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: F. Ambe, Y. Ohkubo, S. Ambe, Y. Kobayashi, T. Okada, Y. Yanagida, J. Nakamura, K. Asai, Y. Kawase, and S. Uehara

Abstract  

The features of time-differential perturbed angular correlation (TDPAC) in studies on local chemical structures around impurity atoms are described in comparison with those of Mössbauer emission spectroscopy with four typical examples of recent applications to metal oxide systems, namely,99Rh 99Ru in -Fe2O3 and YBa2Cu3O7– and117Cd 117In in MO (M=Mn, Co, Ni) and BaRu2/3Cd1/3O3.

Restricted access

Abstract  

The optimum condition for setting the single channel analyzer /SCA/ has been studied with respect to the time required for data acquisition in Mössbauer spectroscopy. It has been found that, regardless what the peak height to background ratio may be, for most practical purposes the best point to cut off the constant background is where the intensity of the Mössbauer peak drops to about 20% of its full height.

Restricted access

Abstract  

A high-resolution high-rate ψ-spectroscopy system is essential or, respectively, useful in three groups of applications: (1) measurement of nuclides with half-lives of less than one second; (2) Measurement of nuclides with half-lives in the second range at high sample activity; (3) Measurement in the same counting geometry of sample series of highly different sample activities. Examples are given for these applications.

Restricted access

Abstract  

The study of trans- and cis-1,2-cyclohexanediol by infrared spectroscopy was performed. The variation of the maximum frequency and of the bandwidth of the OH stretching vibration give evidence of the role played by hydrogen bonding in the solid and liquid phases of both isomers and allows to follow the phase transitions. A solid rotator phase is shown for the cis compound.

Restricted access

Abstract  

Using Mössbauer spectroscopy the quinolinates of iron/II/ and iron/III/ have been studied. In iron/II/ quinolinate three sublattices were evidenced, two of them being attributed to Fe2+ ions and the third to Fe3+ impurities. In the iron/III/ quinolinate five structural sublattices were found, two of them containing Fe3+ ions, the other two Fe2+ ions and the fifth may be attributed to the interstitial Fe3+ ions.

Restricted access

Abstract  

A computer program entitled SCAAP (Set-up, Calibration, Acquisition and Analysis Program) has been designed to make gamma-ray spectroscopy easily useable by staff in laboratories at the Slowpoke-2 Facility at RMC and in support of the Canadian Forces Nuclear Emergency Response Teams (NERTs). The former group utilises gamma-ray spectroscopy for neutron activation analysis (NAA), while the latter may need to have inhalation dose rates calculated. The intent of this program, written using Microsoft Visual Basic, is to provide a simplified interface between the operator and the spectroscopy equipment and to provide the calculations necessary to produce results quickly. There are five sections (Setup, Calibrate, Acquire, Analyse and NAA) of which the first four are linked. In these sections, a checklist of procedures is presented and automated for the user to set up and calibrate the equipment and then to analyse spectra to provide various dose rates. In the unlinked section, NAA, gamma-ray spectra are analysed to provide elemental concentrations in samples.

Restricted access

Abstract  

A neutron detector based on detection of the prompt gamma-radiation emitted as a result of neutron interaction with a suitable neutron absorber is described. Boron-10 loaded polyethylene is used as the neutron converter. Neutrons are thermalized in the polyethylene and are subsequently absorbed by 10B. The result of the neutron absorption is production of 7Li, in the excited state (7Li*) and an alpha-particle. This occurs for 94% of the absorbed neutrons. The 7Li* (T 1/2 = 10-13 s) emits a 477.6 keV gamma-ray ("prompt" gamma-ray) after it is formed and may be detected in a gamma-ray spectroscopy system. Since the "prompt" gamma-ray peak is Doppler broadened – the recoiled 7Li* emits the gamma-ray on "fly" – it is easily distinguishable from other non-capture gamma-ray peaks. The neutron converter, 10B loaded into a polyethylene end cap placed on the standard gamma-ray spectroscopy detector, adds the neutron detection capability without impeding the system's gamma-ray spectroscopy characteristics. Results for detection of neutrons from a moderated 252Cf source are presented.

Restricted access

Abstract  

Utilizing a portable spectroscopy system, a quantitative method for analysis of samples containing a mixture of fission and activation products in nonstandard geometries was developed. This method was not developed to replace other methods such as Monte Carlo or Discrete Ordinates but rather to offer an alternative rapid solution. The method can be used with various sample and shielding configurations where analysis on a laboratory based gamma-spectroscopy system is impractical. The portalle gamma-spectroscopy method involves calibration of the detector and modeling of the sample and shielding to identify and quantify the radionuclides present in the sample. The method utilizes the intrinsic efficiency of the detector and the unattenuated gamma fluence rate at the detector surface per unit activity from the sample to calculate the nuclide activity and Minimum Detectable Activity (MDA). For a complex geometry, a computer code written for shielding applications (MICROSHIELD) is utilized to determine the unattenuated gamma fluence rate per unit activity at the detector surface. Lastly, the method is only applicable to nuclides which emit gamma-rays and cannot be used for pure beta or alpha emitters. In addition, if sample self absorption and shielding is significant, the attenuation will result in high MDA's for nuclides which solely emit low energy gamma-rays. The following presents the analysis technique and presents verification results using actual experimental data, rather than comparisons to other approximations such as Monte Carlo techniques, to demonstrate the accuracy of the method given a known geometry and source term.

Restricted access