Search Results

You are looking at 71 - 80 of 190 items for :

  • "tandem mass spectrometry" x
  • All content x
Clear All

Summary

An improved analytical method for determining the fungicide dimethomorph in vegetables is described. The method involved single extraction with dichloromethane followed by gas chromatography-tandem mass spectrometry (GC-MS/MS) determination. The average recovery rates from vegetable samples spiked with dimethomorph at 10 and 100 μg kg−1 (n = 5) ranged between 81 and 96% and with associated relative standard deviations ≤9%. The limits of detection (LOD) and limits of quantification (LOQ) were below 10 μg kg−1 for the three studied matrices, i.e., tomato, cucumber, and onion. Successful application of the method to the analysis of samples with incurred dimethomorph residues has been demonstrated.

Restricted access

Summary

A rapid, selective, and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay has been proposed for the determination of aripiprazole in human plasma. The analyte and propranolol as internal standard (IS) were extracted from 200 μL of human plasma via liquid-liquid extraction using methyl tert-butyl ether under alkaline conditions. The best chromatographic separation was achieved on an Aquasil C18 (100 × 2.1 mm, 5 μm) column using methanol-deionized water containing 2 mM ammonium trifluoroacetate and 0.02% formic acid (65:35, v/v) as the mobile phase under isocratic conditions. Detection of analyte and IS was done by tandem mass spectrometry, operating in positive ion and multiple reaction monitoring (MRM) acquisition mode. The method was fully validated for its selectivity, interference check, sensitivity, carryover check, linearity, precision and accuracy, reinjection reproducibility, recovery, matrix effect, ion suppression/enhancement, stability, ruggedness, and dilution integrity. The assay was linear over the concentration range of 0.10–100 ng mL−1 for aripiprazole. The intra-batch and inter-batch precision (%CV) was ≤4.8%, while the mean extraction recovery was >96% for aripiprazole across quality control levels. The method was successfully applied to a bioequivalence study of 10 mg aripiprazole orally disintegrating tablet formulation in 27 healthy Indian subjects under fasting and fed condition. The reproducibility in the measurement of study data was demonstrated by reanalysis of 260 incurred samples.

Restricted access

Isocorynoxeine is one of the main alkaloids in Chinese medicinal herbs, and has pharmacological activities such as antihypertensive, sedative, anticonvulsant, and neuronal protection. It is an effective component of Uncaria for the treatment of hypertension. In this study, we used a fast and sensitive ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) to detect isocorynoxeine in rat plasma and investigated its pharmacokinetics in rats. Six rats were given isocorynoxeine (15 mg/kg) by intraperitoneal (i.p.) administration. Blood (100 μL) was withdrawn from the caudal vein at 5 and 30 min and 1, 2, 4, 6, 8, 12, and 24 h after administration. Chromatographic separation was achieved using a UPLC BEH C18 column using a mobile phase of acetonitrile–0.1% formic acid with gradient elution. Electrospray ionization (ESI) tandem mass spectrometry in the multiple reaction monitoring (MRM) mode with positive ionization was applied. Intra-day and inter-day precisions (relative standard deviation, %RSD) of isocorynoxeine in rat plasma were lower than 12%. The method was successfully applied in the pharmacokinetics of isocorynoxeine in rats after intraperitoneal administration. The t 1/2 of isocorynoxeine is 4.9 ± 2.1 h, which indicates quick elimination.

Open access

Berendsen, B.J.A., Essers, M.L., Stolker, A.A.M. & Nielen, M.W.F. (2011): Quantitative trace analysis of eight chloramphenicol isomers in urine by chiral liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A ., 1218 , 7331

Restricted access
JPC - Journal of Planar Chromatography - Modern TLC
Authors: Emil Mincsovics, Péter Ott, Ágnes Alberti, Andrea Böszörményi, Éva Héthelyi, Éva Szőke, Ágnes Kéry, Éva Lemberkovics, and Ágnes Móricz

Bioassay-guided isolation of antibacterial components of chamomile flower methanol extract was performed by overpressured layer chromatography (OPLC) with on-line detection, fractionation combined with sample clean-up in-situ in the adsorbent bed after off-line sample application. The antibacterial effect of the eluted fractions and of those compounds remaining on the adsorbent layer after separation was tested with direct bioautography (DB) against the bioluminescent Pseudomonas savastanoi pv. maculicola and Vibrio fischeri. The fractions with high biological activity were analyzed by solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) and liquid chromatography and tandem mass spectrometry (LC-MS/MS). Two active uneluted compounds were characterized by off-line OPLC-MS using a thin-layer chromatography (TLC)-MS interface. Mainly, essential oil components, coumarins, flavonoids, phenolic acids, and fatty acids were identified in the active fractions.

Restricted access

Summary

A new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous determination of glycyrrhizin, formononetin, glycyrrhetinic acid, liquiritin, isoliquiritigenin, and licochalcone A in licorice. An Eclipse Plus C18 column (I.D. 4.6 × 100 mm, 3.5 μm particle size; Agilent) was used in the analysis. Electrospray ionization (ESI)-tandem interface in the negative mode was performed, and multiple reaction monitoring (MRM) was employed with the precursor multiple reaction monitoring production combination for the determination of six analytes. The average recoveries ranged from 98.30% to 100.13% with relative standard deviations (RSDs) ≤ 1.95%, and limits of detection (LODs) ranged from 2.1 to 3.6 pg. The applicability of this analytical approach was confirmed by the successful analysis of six samples. The results indicated that the established method was validated, sensitive, and reliable for the determination of six analytes in licorice.

Restricted access
Acta Chromatographica
Authors: Gobinda Chandra Acharya, Naresh Ponnam, Meenu Kumari, Tapas Kumar Roy, Kodthalu Seetharamaiah Shivashankara, and Manas Ranjan Sahoo

Abstract

Spiny coriander (Eryngium foetidum L.) is a perennial medicinal herb grown in the tropical regions worldwide. In India, it is used as a potential spice for garnishing and flavoring the dishes and treating several ailments. Eryngium spp. found in coastal Odisha, India has a strong aroma similar to the seasonal Coriandrum. The volatile flavor constituents of the unique plants were analyzed through headspace solid-phase microextraction (HS-SPME) using capillary gas chromatography (GC) and gas chromatography-tandem mass spectrometry (GC–MS/MS). The volatile compounds exhibited high chemodiversity, with 10-undecenal as the major component in leaves (44.98%) and branches (57.43%). Fourier-transform infrared (FTIR) spectroscopy identified eight major peaks grouped into six main regions. Chemo profiles of these two corianders were overlapped and showed similar area differences in the spectral peak. The lesser-known perennial Eryngium with high chemodiversity would be a better alternative to the seasonal coriander for aromatic, pharmaceutical, and industrial uses.

Open access

Deltamethrin, a well-known type 2 synthetic pyrethroid insecticide, is a widespread environmental toxicant. It has potential to accumulate in body fluids and tissues due to its lipophilic characteristics. The immune system is among the most sensitive targets regarding toxicity of environmental pollutants. Various methods are available in the literature to analyze deltamethrin (DLM) concentration in plasma and tissues, but regarding the immune organs, only one gas chromatography–tandem mass spectrometry (GC–MS/MS) method (on spleen tissues) has been reported. In the present investigation, a rapid and sensitive high-performance liquid chromatography (HPLC) method has been developed and validated to determine DLM concentration in plasma, thymus, and spleen using zaleplone as an internal standard. Liquid chromatography (LC) separation is performed on an Agilent Zorbax® C8 column (250 mm × 4.6 mm, i.d., 5 μm) with isocratic elution using a mobile phase consisting of acetonitrile–5 mM KH2PO4 (70:30, v/v) at a flow rate of 1 mL min−1. The lower limit of quantification (LLOQ) for DLM is 10 ng mL−1 (plasma, thymus, and spleen). The method has been validated in terms of establishing linearity, specificity, sensitivity, recovery, accuracy, and precision (intra- and inter-day) and stabilities study. This validated method was successfully applied to a pharmacokinetic and tissue distribution study of DLM in mice.

Open access

In the present study, the degradation behavior of Fenofibrate under different International Conference on Harmonization (ICH) suggested conditions was studied. Characterization of degradation products by liquid chromatography–tandem mass spectrometry (LC–MS/MS) studies in solution form was done, and the possible mechanism for the formation of degradants is discussed. Fenofibrate was subjected to different hydrolytic stress conditions and thermal stress condition (in solid form). Successful separation of drug from degradants was achieved on a C18 column using water–acetonitrile (25:75 v/v) as the mobile phase. Other high-performance liquid chromatography (HPLC) parameters were: flow rate, 1 mL min−1; detection wavelength, 286 nm; column temperature, 25 °C; and injection volume, 20 μL. The method was validated for linearity, precision, accuracy, robustness, and specificity and was stability-indicating one, based on the specificity studies. The drug degraded under acidic, basic, and oxidative hydrolytic stress while it was relatively stable towards neutral hydrolysis and thermal stress. The stressed samples were subjected to LC–MS/MS analysis. On the basis of spectral data, the structures of four degradation products and one interaction product were suggested. Degradation products were characterized to be isopropyl acetate, 2-[4-(4-chlorobenzoyl)phenoxy]-2-methyl propanoic acid, 4-hydroxy benzoic acid, and benzoic acid. The structure of one interaction product was proposed as methyl 2-[4-(4-chlorobenzoyl)phenoxy]-2-methylpropanoate.

Open access

A rapid, selective, sensitive, and simple method for simultaneous determination of tigecycline and its epimer in human plasma samples was developed and validated by liquid chromatography–tandem mass spectrometry (LC–MS/MS). Sample preparation involved one-step protein precipitation by adding 0.1% formic acid–methanol and phosphate buffer (PB) solution to the plasma. Chromatographic separation was obtained with XBridge BEH C18 column (3.5 μm, 50 × 4.6 mm) through a 9.5-min gradient mobile phase at the flow rate of 0.6 mL min−1 at 4 °C. The calibration curves were linear over concentration 5.00–2000 ng mL−1 with correlation coefficient greater than 0.998. Intra-batch and inter-batch accuracy of the assay were in the ranges of −2.90% to 3.00%, and the corresponding precision was less than 6.97%. The extraction recovery of tigecycline and its epimer with the current method were 87.2% and 76.9%, respectively. The applied LC–MS/MS method was shown to be sufficiently sensitive and will be suitable for pharmacokinetic studies.

Open access