Search Results

You are looking at 81 - 90 of 191 items for :

  • "tandem mass spectrometry" x
  • All content x
Clear All

Seed germination is a new beginning for the crop life cycle, which is closely related to seed sprouting and subsequent plant growth and development, and ultimately affects grain yield and quality. Salt stress is one of the most important abiotic stress factors that restrict crop production. Therefore, it is highly important to improve crop salt tolerance and sufficient utilization of saline-alkali land. In this study, we identified the phosphorylated proteins involved in salt stress response by combining SEM, 2-DE, Pro-Q Diamond staining and tandem mass spectrometry. The results showed that salt stress significantly inhibited seed germination and starch degradation. In total, 14 phosphorylated protein spots (11 unique proteins) in the embryo and 6 phosphorylated protein spots (4 unique proteins) in the endosperm were identified, which mainly involved in stress/defense, protein metabolism and energy metabolism. The phosphorylation of some proteins such as cold regulated proteins, 27K protein, EF-1β and superoxide dismutase could play important roles in salt stress tolerance.

Restricted access

Summary

A new liquid chromatography tandem mass spectrometry (LC-MS/MS) assay for the quantification of seven isoflavones (daidzin, genistin, ononin, daidzein, glycitein, genistein, and formononetin) and coumestrol in vegetable extracts was developed. The separation was performed on a Zorbax SB-C18 column with a mixture of methanol (solvent A) and 0.1% (υ/υ) acetic acid in water (solvent B) under gradient conditions at 50°C with a flow rate of 1 mL min−1. The detection of analytes was performed by electrospray ionization, negative ionisation, in non-reactive MS2 mode for aglycons or in reactive MS2 mode for glycosides. The method shows a good linearity (r 2 > 0.9948) over the concentration range of 40–4000 ng mL−1 for all analytes, a good precision (CV < 11%) and accuracy (<10%). The method was successfully applied to quantify the isoflavones and coumestrol in vegetable extracts obtained from red clover (Trifolium pratense L., Fabaceae) and dyer's greenweed (Genista tinctoria L., Fabaceae) and can be used in the chemical characterization of vegetables with phytoestrogen content.

Full access

The aim of this study was to assess the impact of hanging position of hunted pheasant carcasses (secured by the head as compared to hanging position secured by the legs) on the biogenic amine concentration in the thigh and breast muscles. The carcasses of feathered game (Phasianus colchicus), left entirely untreated after hunting and placed in a storage space at a pre-set temperature of 7 °C for 21 days were used in the study. Samples of breast and thigh muscles were taken at regular weekly intervals. Measurement of biogenic amines (putrescine, cadaverine, tyramine, tryptamine, histamine, phenylethylamine) was based on high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry. Higher biogenic amine concentrations were detected in the muscles (both breast and thigh) of pheasants hanging by their legs compared to pheasants hanging by their heads (no statistically significant difference in biogenic amine concentration between monitored groups was, however, established). Higher concentrations of biogenic amines were found in the thigh muscles compared to breast muscles in both monitored groups. The obtained results show, that hanging the carcasses of pheasants during storage by the head is more suitable method in term of biogenic amine concentration than storing carcasses hanging by the legs.

Restricted access

An improved ion-pairing reversed-phase high-performance liquid chromatography method coupled with evaporative light scattering detection (HPLC-ELSD) was developed to determine spectinomycin and its related substances in commercial samples. The method was validated in accordance with International Conference on Harmonization (ICH) guidelines. The specificity of the HPLC-ELSD method was similar to that of the European Pharmacopoeia (Ph. Eur.) method, and repeatability and robustness were markedly improved relative to other reported methods due to our empirical evaluation of separation columns. Indeed, it is a more specific assay of spectinomycin than traditional microbiological techniques. The HPLC-ELSD method was used to evaluate the impurity profiles of eight compounds in seven spectinomycin batches from five different companies. Liquid chromatography coupled with electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was employed to characterize the structures of these compounds. Though the HPLC-ELSD method was not as sensitive as the Ph. Eur. method, its limit of quantitation (LOQ) (0.16%) was lower than the disregard limit (0.3%) described by the Ph. Eur. 7.0. This suggests that the HPLC-ELSD method is appropriate for routine analysis of spectinomycin and its related substances.

Open access

This paper is focused on the determination of three hexabromocyclododecane isomers, α, β, and γ, in the tissue of the most commonly consumed marine and farmed fish in Central Europe. The analytical procedure contains multiple steps: extraction, dialysis using semipermeable membranes, and a clean-up step using a silica gel column. Hexabromocyclododecane (HBCD) isomers were determined by sensitive isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) method which is characterized by a low limit of detection (1 pg g−1 fresh weight). The recovery values obtained for individual isomers were in the range of 89–124%. The γ-HBCD isomer was detected in all samples. This isomer also had the largest percentage in comparison with the other isomers, except in salmon, in which the α-HBCD isomer was more abundant. The highest level of total HBCD was measured in mackerel (650 ± 195 pg g−1 fresh weight). Cluster analysis allowed the differentiation of groups of objects and the display of objects based on the degree of integration within the same group. Spearman’s rank correlation indicated no statistically significant difference between the levels of HBCD and the fat content in the fish samples.

Full access

Deltamethrin, a well-known type 2 synthetic pyrethroid insecticide, is a widespread environmental toxicant. It has potential to accumulate in body fluids and tissues due to its lipophilic characteristics. The immune system is among the most sensitive targets regarding toxicity of environmental pollutants. Various methods are available in the literature to analyze deltamethrin (DLM) concentration in plasma and tissues, but regarding the immune organs, only one gas chromatography–tandem mass spectrometry (GC–MS/MS) method (on spleen tissues) has been reported. In the present investigation, a rapid and sensitive high-performance liquid chromatography (HPLC) method has been developed and validated to determine DLM concentration in plasma, thymus, and spleen using zaleplone as an internal standard. Liquid chromatography (LC) separation is performed on an Agilent Zorbax® C8 column (250 mm × 4.6 mm, i.d., 5 μm) with isocratic elution using a mobile phase consisting of acetonitrile–5 mM KH2PO4 (70:30, v/v) at a flow rate of 1 mL min−1. The lower limit of quantification (LLOQ) for DLM is 10 ng mL−1 (plasma, thymus, and spleen). The method has been validated in terms of establishing linearity, specificity, sensitivity, recovery, accuracy, and precision (intra- and inter-day) and stabilities study. This validated method was successfully applied to a pharmacokinetic and tissue distribution study of DLM in mice.

Open access

A rapid, selective, sensitive, and simple method for simultaneous determination of tigecycline and its epimer in human plasma samples was developed and validated by liquid chromatography–tandem mass spectrometry (LC–MS/MS). Sample preparation involved one-step protein precipitation by adding 0.1% formic acid–methanol and phosphate buffer (PB) solution to the plasma. Chromatographic separation was obtained with XBridge BEH C18 column (3.5 μm, 50 × 4.6 mm) through a 9.5-min gradient mobile phase at the flow rate of 0.6 mL min−1 at 4 °C. The calibration curves were linear over concentration 5.00–2000 ng mL−1 with correlation coefficient greater than 0.998. Intra-batch and inter-batch accuracy of the assay were in the ranges of −2.90% to 3.00%, and the corresponding precision was less than 6.97%. The extraction recovery of tigecycline and its epimer with the current method were 87.2% and 76.9%, respectively. The applied LC–MS/MS method was shown to be sufficiently sensitive and will be suitable for pharmacokinetic studies.

Open access

Summary

Scutellaria L. is a diverse genus of the Lamiaceae (Labiatae) family of over 300 herbaceous plants commonly known as skullcaps. Various species of Scutellaria are used as ethnobotanical herbs for the treatment of ailments like cancer, jaundice, cirrhosis, anxiety, and nervous disorders. Scutellaria incana L., commonly known as the Hoary skullcap, is a traditional medicinal plant used by native Americans as a sedative for nervousness or anxiety. S. incana metabolites were identified by comparing their high-performance liquid chromatography (HPLC) retention times and mass spectra with those of the corresponding authentic standards. Where standards were unavailable, the structures were characterized on the basis of their tandem mass spectrometry (MS/MS) spectra following collision-induced dissociation (CID) and the accurate masses of the corresponding deprotonated molecules [M-H] (mass accuracy ± 5 ppm). A total of 40 flavonoids, including two phenolic glycosides, were identified from leaves, stems, and roots of S. incana. Differences in the flavonoid composition between leaves, stems, and roots in S. incana were observed although the flavonoid profile of S. incana is consistent with other Scutellaria species. Further work should focus on assessing the potential of S. incana as a source of these bioactive metabolites.

Full access

Summary

Galantamine hydrobromide was subjected to oxidative stress degradation using hydrogen peroxide and analyzed as per the chromatographic conditions described in European Pharmacopoeia. The drug showed considerable degradation at ambient temperature resulting in the formation of two degradation products at relative retention times (RRTs) 0.63 and 2.52. The minor degradant at RRT 0.63 was identified as galantamine N-oxide. The principal degradant formed at RRT 2.52 was found to be unknown and has not been reported previously. The unknown impurity was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by isolation using semi-preparative high-performance liquid chromatography (HPLC). The isolated impurity was characterized using one-dimensional, two-dimensional nuclear magnetic resonance spectroscopy (1D and 2D NMR) and elemental analysis (EA). The principal degradant was found to be formed due to the generation of bromine and subsequent attack on the aromatic ring via in situ reaction between hydrogen bromide and hydrogen peroxide. The unknown impurity was characterized as (4aS,6R,8aS)-5,6,9,10,11,12-hexahydro-1-bromo-3-methoxy-11-methyl-4aH-[1]benzofuro [3a,3,2-ef] [2] benzazepin-6-ol.

Full access

The composition and concentration of natural products largely depend on a plant part, development stage, cultivar, and growing conditions. This study evaluated the influence of cultivars and production systems on the composition of natural products (benzoxazinoids) in wheat aerial parts. The determination of benzoxazinoids was performed by combining pressurized liquid extraction, ultra-performance liquid chromatography, and tandem mass spectrometry. Six benzoxazinoids were identified and quantitated in wheat varieties. Significant differences were observed among the examined varieties. The average concentrations of total researched compounds were definitely higher in the organically produced spring wheat cultivars than in the winter ones. The content of these compounds in the same varieties grown under organic and conventional systems showed their higher content under the organic one. The main benzoxazinoids detected in wheat varieties were 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside (DIMBOA-Glc) and 6-methoxy-2-benzoxazolinone (MBOA). The richest sources of benzoxazinoids were Brawura, Łagwa, and Kandela (52.46, 34.67, and 30.14 μg/g dry weight [DW], respectively).

Open access