Search Results

You are looking at 1 - 10 of 86 items for :

  • "composites" x
  • Mathematics and Statistics x
  • All content x
Clear All

Introduction Composite indicators (or indices) are of increasing interest for benchmarking institutions’ performance. Organizations such as the United Nations, the European Commission and others have developed and used

Restricted access

Summary  

Both quantitative and qualitative evaluation of publications of research teams or institutes requires several scientometric indicators. In this paper a new composite indicator is introduced for the assessment of publications of research institutes working in different fields of science. The composite indicator consists of three part-indicators (Journal Paper Productivity, Relative Publication Strategy and Relative Paper Citedness). The different methods of calculating the composite index have only a slight effect on the value, whereas application of diverse weights for the individual part-indicators results in significant changes.

Restricted access

Abstract  

The quasilinearity of certain composite functionals associated to Schwarz’s celebrated inequality for inner products is investigated. Applications for operators in Hilbert spaces are given as well.

Restricted access

Summary Composite science and technology (S&T) indices are essential to overall understanding and evaluation of national S&T status, and to formulation of S&T policy. However, only a few studies on making these indices have been conducted so far since a number of complications and uncertainties are involved in the work. Therefore, this study proposes a new approach to employ fuzzy set theory and to make composite S&T indices, and applies it. The approach appears to successfully integrate various S&T indicators into three indices: R&D input, R&D output, and economic output. We also compare Korea’s S&T indices with those of five developed countries (France, Germany, Japan, the United Kingdom, and the United States) to obtain some implications of the results for Korea’s S&T.

Restricted access

Abstract  

The advanced materials studied were those composites based on ceramic, boron, carbon and aramid fibres. Research level was quantified by a bibliometric analysis of publications including a study of citations, an analysis of patents, a professional assessment of Soviet work by reviewing the open literature and by discussing with scientists and engineers in the former Soviet Union. The conclusion drawn was that the level of research in the former USSR did not match that in the West. There were, however, several niche areas were the level of research was comparable or in advance of the West, notably aramid fibres.

Restricted access

Abstract  

Let X be a real vector space and J be a nontrivial real interval. We determine all solutions (g, M, H) of the equation

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$g(x + M(g(x))y) = H(g(x),g(y)) for x,y \in X,$$ \end{document}
under the assumptions that g: XJ is continuous on rays, M: JR is continuous and H: J 2J is associative.

Restricted access

Summary  

Recently, Goubin, Mauduit, Rivat and Srkzy have given three constructions for large families of binary sequences. In each of these constructions the sequence is defined by modulo \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $p$ \end{document} congruences where \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $p$ \end{document} is a prime number. In this paper the three constructions are extended to the case when the modulus is of the form \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $pq$ \end{document} where \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $p$ \end{document}, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $q$ \end{document} are two distinct primes not far apart (note that the well-known Blum-Blum-Shub and RSA constructions for pseudorandom sequences are also of this type). It is shown that these modulo \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $pq$ \end{document} constructions also have certain strong pseudorandom properties but, e.g., the (``long range'') correlation of order \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $4$ \end{document} is large (similar phenomenon may occur in other modulo \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $pq$ \end{document} constructions as well).

Restricted access