Search Results

You are looking at 11 - 13 of 13 items for

  • Author or Editor: J. Domínguez x
Clear All Modify Search

Summary This paper reports excess molar enthalpies of the binary systems hexane+ethyl benzene, hexane+o-xylene, hexane+m-xylene and hexane+p-xylene at 298.15 K and atmospheric pressure, over the whole composition range. The data was measured directly using a Calvet microcalorimeter. The excess magnitude was correlated to a Redlich-Kister type equation for each mixture. Also, we will discuss the results for the four mixtures studied here and by comparison with the same binary systems but containing propyl propanoate as first component. Finally, we will correlate our results with the Nitta-Chao and the three UNIFAC theoretical approximations.

Restricted access
Authors: S. Freire, L. Segade, S. García-Garabal, J. Jiménez de Llano, M. Domínguez and E. Jiménez

Abstract  

Excess molar enthalpies for the ternary mixture {propyl propanoate + hexane + chlorobenzene} and the binary mixtures {propyl propanoate + chlorobenzene} and {hexane + chlorobenzene} were determined at the temperature 298.15 K and normal atmospheric pressure. The experimental values were measured using a Calvet microcalorimeter. Excess molar enthalpies obtained were also used to test empirical expressions for estimating ternary properties from binary results.

Restricted access
Authors: J. Murillo-Hernández, S. López-Ramírez, J. Domínguez, C. Duran-Valencia, I. García-Cruz and J. González-Guevara

Abstract  

A survey on the effect of ionic liquids (ILs) over the thermal stability of a heavy Mexican oil was performed. ILs used were based on [Cnim]+ and [Cnpyr]+ organic cations with FeCl4 metal anion. Mixtures of heavy crude oil (HCO) with ILs show three oxidation zones: low temperature oxidation (LTO), full deposition (FD) and high temperature oxidation (HTO). Thermal stability and mass loss decrease in the LTO zone but increase in the FD and HTO zones for every ILs used. The activation energy of the oxidation is influenced by the ILs in the HTO zone. It decreases when increasing the size of the organic radical substitute in the cation of the ILs while it increases with the presence of hydroxyl groups. The influence of electronic structure and reactivity indexes are rationalized to understand the variations of activation energy obtained of the reaction systems. Among all cations used, cation-3 (IL-3) shows the greater value of HOMO-LUMO gap as well as the lower activation energy.

Restricted access