Search Results

You are looking at 21 - 30 of 33 items for

  • Author or Editor: Ferenc Móricz x
Clear All Modify Search

Abstract  

Let f: R NC be a periodic function with period 2π in each variable. We prove suffcient conditions for the absolute convergence of the multiple Fourier series of f in terms of moduli of continuity, of bounded variation in the sense of Vitali or Hardy and Krause, and of the mixed partial derivative in case f is an absolutely continuous function. Our results extend the classical theorems of Bernstein and Zygmund from single to multiple Fourier series.

Restricted access

Abstract  

We consider Hausdorff operators generated by a function ϕ integrable in Lebesgue"s sense on either R or R 2, and acting on the real Hardy space H 1(R), or the product Hardy space H 11(R R), or one of the hybrid Hardy spaces H 10(R 2) and H 01(R 2), respectively. We give a necessary and sufficient condition in terms of ϕ that the Hausdorff operator generated by it commutes with the corresponding Hilbert transform.

Restricted access

Abstract  

The weighted averages of a sequence (c k), c k ∈ ℂ, with respect to the weights (p k), p k ≥ 0, with {fx135-1} are defined by {fx135-2} while the weighted average of a measurable function f: ℝ+ → ℂ with respect to the weight function p(t) ≥ 0 with {fx135-3}. Under mild assumptions on the weights, we give necessary and sufficient conditions under which the finite limit σ nL as n → ∞ or σ(t) → L as t → ∞ exists, respectively. These characterizations may find applications in probability theory.

Restricted access

Abstract  

In a recent paper [4], Gogoladze and Meskhia generalized the classical results of Bernstein, Szász, Zygmund and others related to absolute convergence of single trigonometric Fourier series. Our aim is to extend these results from single to multiple Fourier series. To this effect, we introduce the notions of multiplicative moduli of continuity and that of smoothness. Multiplicative Lipschitz classes of functions in several variables, and functions of bounded s-variation in the sense of Vitali are also considered.

Restricted access

Summary  

Given a real-valued function \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\mu(x,y)$ \end{document} of bounded variation in the sense of Hardy and Krause on the square \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $[0, 2\pi]\times [0, 2\pi]$ \end{document}, the sequence

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mu_{m,n}:=\int^{2\pi}_0 \int^{2\pi}_0 e^{i(mx+ny)} \, d_x \, d_y \mu(x,y), \quad (m,n)\in \mathbf{Z}^2,$$ \end{document}
may be called the sequence of trigonometric moment constants with respect to \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\mu(x,y)$ \end{document}. We discuss the uniqueness of the expression of the sequence \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\{\mu_{m,n}\}$ \end{document} in terms of the function \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\mu(x,y)$ \end{document}.

Restricted access