Search Results

You are looking at 31 - 33 of 33 items for

  • Author or Editor: Hagen Frickmann x
Clear All Modify Search
Authors: Hagen Frickmann, Andreas Hahn, Stefan Berlec, Johannes Ulrich, Moritz Jansson, Norbert Georg Schwarz, Philipp Warnke and Andreas Podbielski

Introduction: Escherichia coli and Staphylococcus aureus are important causes of severe diseases like blood stream infections. This study comparatively assessed potential differences in their impact on disease severity in local and systemic infections.

Methods: Over a 5-year interval, patients in whom either E. coli or S. aureus was detected in superficial or primary sterile compartments were assessed for the primary endpoint death during hospital stay and the secondary endpoints duration of hospital stay and infectious disease as the main diagnosis.

Results: Significance was achieved for the impacts as follows: Superficial infection with S. aureus was associated with an odds ratio of 0.27 regarding the risk of death and of 1.42 regarding infectious disease as main diagnosis. Superficial infection with E. coli was associated with a reduced duration of hospital stay by −2.46 days and a reduced odds ratio of infectious diseases as main diagnosis of 0.04. The hospital stay of patients with E. coli was increased due to third-generation cephalosporin and ciprofloxacin resistance, and in the case of patients with S. aureus due to tetracycline and fusidic acid resistance.

Conclusions: Reduced disease severity of superficial infections due to both E. coli and S. aureus and resistance-driven prolonged stays in hospital were confirmed, while other outcome parameters were comparable.

Open access
Authors: Andreas Erich Zautner, Annina Hage, Katja Schneider, Karolin Schlösser, Ortrud Zimmermann, Else Hornecker, Rainer F. Mausberg, Hagen Frickmann, Uwe Groß and Dirk Ziebolz

Abstract

It is well known that dental caries and periodontitis are the consequence of bacterial colonization and biofilm formation on the enamel surface. The continuous presence of bacterial biofilms on the tooth surface results in demineralization of the tooth enamel and induces an inflammatory reaction of the surrounding gums (gingivitis). The retention and survival of microorganisms on toothbrushes pose a threat of recontamination especially for certain patients at risk for systemic infections originating from the oral cavity, e.g., after T-cell depleted bone marrow transplantation. Thus, the effects of different decolonization schemes on bacterial colonization of toothbrushes were analyzed, in order to demonstrate their applicability to reduce the likelihood of (auto-)reinfections.

Toothbrushes were intentionally contaminated with standardized suspensions of Streptococcus mutans or Staphylococcus aureus. Afterwards, the toothbrushes were exposed to rinsing under distilled water, rinsing and drying for 24 h, 0.2% chlorhexidine-based decolonization, or ultraviolet (UV) radiation. The remaining colony forming units were compared with freshly contaminated positive controls. Each experiment was nine-fold repeated. Bi-factorial variance analysis was performed; significance was accepted at P < 0.05.

All tested procedures led to a significant reduction of bacteral colonization irrespective of the toothbrush model, the brush head type, or the acitivity state. Chlorhexidine-based decolonization was shown to be superior to rinsing and slightly superior to rinsing and drying for 24 h, while UV radiation was similarly effective as chlorhexidine. UV radiation was slightly less prone to species-dependent limitations of its decolonizing effects by bristle thickness of toothbrushes than chlorhexidin.

Reduction of bacterial colonization of toothbrushes might reduce the risk of maintaining bacterial infections of the upper respiratory tract. Accordingly, respective procedures are advisable, particularly as they are cheap and easy to perform.

Restricted access
Authors: Hans Kollenda, Hagen Frickmann, Rania Ben Helal, Dorothea Franziska Wiemer, Habiba Naija, Mohamed Sélim El Asli, Melanie Egold, Joachim Jakob Bugert, Susann Handrick, Roman Wölfel, Farouk Barguellil and Mohamed Ben Moussa

Background: Carbapenem-resistance is frequently detected in Enterobacteriaceae isolated from patients in Tunisia. The study was performed to identify frequent carbapenemases in Tunisian isolates.

Methods: Between May 2014 and January 2018, 197 ertapenem-resistant Enterobacteriaceae were isolated at the microbiological department of the Military Hospital of Tunis. The strains were phenotypically characterized and then subjected to in-house polymerase chain reaction (PCR) targeting the carbapenemase genes blaIMP, blaVIM, blaNDM, blaSPM, blaAIM, blaDIM, blaGIM, blaSIM, blaKPC, blaBIC, and blaOXA-48.

Results: The assessed 197 ertapenem-resistant Enterobacteriaceae from Tunis comprised 170 Klebsiella pneumoniae, 19 Enterobacter cloacae, 6 Escherichia coli, 1 Citrobacter sedlakii, and 1 Enterobacter asburiae. Thereby, 55 out of 197 isolates (27.9%) were from blood cultures, suggesting a systemic disease. The carbapenemase gene blaOXA-48 quantitatively dominated by far with 153 detections, followed by blaNDM with 14 detections, which were distributed about the whole study interval. In contrast, blaBIC and blaVIM were only infrequently identified in 5 and 3 cases, respectively, while the other carbapenamases were not observed.

Conclusions: The carbapenemase gene blaOXA-48 was identified in the vast majority of ertapenem-resistant Tunisian Enterobacteriaceae while all other assessed carbapenemases were much less abundant. In a quantitatively relevant minority of isolates, the applied PCR-based screening approach did not identify any carbapenemases.

Open access