Search Results

You are looking at 61 - 70 of 127 items for

  • Author or Editor: L. Wang x
Clear All Modify Search
Acta Alimentaria
Authors: R.D. Wang, Y.J. Deng, L.J. Sun, Y.L. Wang, Z.J. Fang, D.F. Sun, Q. Deng and R. Gooneratne

Growth and haemolytic activity of several pathogenic Vibrio species were compared in egg-fried-rice with different egg ratios. Egg-fried-rice preparations with rice-to-egg ratios of 4:1, 1:1, and 1:4 were inoculated with either Vibrio parahaemolyticus, V. cholerae, V. vulnificus, or V. alginolyticus and incubated for 24 h. Cell number, thermostable direct haemolysin (TDH) activity, and total haemolytic activity were determined. The cell number and total haemolytic activity increased in all Vibrio strains after 24 h, and these were most marked in egg-fried-rice with the highest egg content (1:4 (rice:egg) ratio; P<0.05). V. alginolyticus exhibited the maximal growth and V. parahaemolyticus the highest haemolytic activity, but only V. parahaemolyticus ATCC 33847, V. alginolyticus CAMT 21162, and V. alginolyticus HY 91101 showed TDH activity. Results suggest that lowering egg content in egg-fried-rice could reduce growth and virulence of Vibrio pathogens.

Open access

Physiological male sterility induced by the chemical hybridizing agent (CHA) overcomes problems of maintenance of sterile lines and restorers. However, the mechanism of sterility is unclear. The process of tapetum of CHA-treated ‘Xi’nong 2611’ at uninucleate, binucleate and trinucleate were compared with control to determine if tapetum varying differently during developmental stages. Tapetal degradation in CHA-treated ‘Xi’nong 2611’ began at late uninucleate stage, somewhat earlier than control plants. Cytological observations indicated that the gradual degradation of the tapetum in CHA-treated ‘Xi’nong 2611’ was initiated and terminated earlier than in the control. These findings implied that CHA-induced male sterility was related to abnormally early tapetal degradation. In order to indicate the role of the SKP1 gene in fertility/sterility in wheat, its expression was assessed in anthers at uninucleate, binucleate and trinucleate stages. SKP1 expression was reduced in the later developmental stages, and there was an obvious decrease from the uninucleate to trinucleate stages. Higher expression of the SKP1 gene occurred in ‘Xi’nong 2611’ compared to CHA-treated ‘Xi’nong 2611’. This implied that SKP1 gene expression was inhibited during the fertility transformation process and was related to transformation from fertility to sterility. Moreover, the results from this study suggest that SKP1 plays an essential role of conducting fertility in physiological male sterility.

Restricted access

To explore the physiological characteristics of the pepc gene in transgenic wheat (Triticum aestivum) plants, PEPC activities in various organs of T3 plants were analyzed at Feekes 6.0, Feekes 10.3 and Feekes 11.1, and compared to control, untransformed wheat cultivar Zhoumai 19. Net photosynthetic rates (P n) in leaves were also measured at the same stages. At Feekes 11.1, both transgenic and control plants were treated with DCDP. Yield traits were surveyed after harvest. The results indicated that P n and PEPC activity in the flag leaf of transgenic wheat were significantly higher than those of the control at different stages. At Feekes 10.3, P n reached the highest value at 28.2 μmol m−2 s−1 and PEPC activity reached the highest value at 104.6 μmol h−1 mg−1. Both factors significantly increased by 21% compared to the control at Feekes 11.1. PEPC activity in the flag leaf of transgenic plants was significantly higher than that of non-leaf organs. P n of transgenic plants was greatly reduced after DCDP treatment. In the flag leaf of transgenic wheat, P n was significantly correlated to PEPC activities at 0.01 probability level with a correlation coefficient of 0.8957**. The yield traits of transgenic line 1-27-3, such as 1000-grain weight, single spike weight and harvest index were higher than those of the control. Additionally, the spike weight of 1-27-3 showed an increase of approximately 9.5% compared to the control. These results indicated that the expression of maize (Zea mays) pepc gene was different across various organs of transgenic wheat and across every growth stage. Therefore, we conclude that introducing maize pepc gene into wheat plants can increase their P n and improve production.

Restricted access

Thinopyrum intermedium, which has many useful traits, is valuable for wheat breeding. A new wheat-Thinopyrum addition line, SN100109, was developed from the progeny of common wheat cultivar Yannong 15 and Th. intermedium. It was resistant to most races of Blumeria graminis f. sp tritici (Bgt), which caused powdery mildew in wheat, and its reactions were different from the reactions of gene Pm40 and Pm43. Genomic in situ hybridization (GISH) and molecular marker analysis were used to identify the genomic composition of SN100109. GISH results showed that SN100109 was a wheat-Th. intermedium disomic addition line containing one pair of J chromosomes, and the resistance gene was located on the alien additional chromosomes of SN100109. And four molecular markers BE425942, BF482714, Xgdm93 and BV679214 which were assigned to homologous group 2, were specific molecular markers of the additional chromosomes. All the results indicated that SN100109 contained one pair of 2J chromosomes. SN100109 can be used as a novel germplasm source for introducing powdery mildew resistance genes to wheat in breeding programs.

Restricted access

Lipopolysaccharide and b-1,3-glucan binding protein (LGBP) is a pattern recognition receptor that can recognize and bind LPS and b-1,3-glucan. LGBP has crucial roles in innate immune defense against Gram-negative bacteria and fungi. In this study, LGBP functions in Portunus trituberculatus innate immunity were analyzed. First, the mRNA expression of PtLGBP in hemocytes, hepatopancreas, and muscle toward three typical pathogen-associated molecular patterns (PAMPs) stimulations were examined using real-time PCR. Results show that the overall trend of relative expressions of the LGBP gene in three tissues is consistent, showing up-down trend. In each group, the highest expression of the LGBP gene was at 3 and 12 h post-injection. The LGBP gene is also expressed significantly higher in the hemocytes and hepatopancreas than in the muscle. The highest level of LGBP was in the lipopolysaccharides (LPS) and glucan-injected group, whereas the lowest level was in the PGN-injected group. Furthermore, bacterial agglutination assay with polyclonal antibody specifically for PtLGBP proved that the recombinant PtLGBP (designated as rPtLGBP) could exhibit obvious agglutination activity toward Gram-negative bacteria Escherichia coli, Vibrio parahaemolyticus, and V. alginolyticus; Gram-positive bacteria Bacillus subtilis; and fungi Saccharomyces cerevisiae. LGBP in Portunus trituberculatus possibly served as a multi-functional PRR. In addition, LGBP is not only involved in the immune response against Gram-negative and fungi, as manifested in other invertebrates, but also has a significant role in anti-Gram-positive bacteria infection.

Restricted access

Stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is one of the most serious diseases of wheat ( Triticum aestivum L.) worldwide. Of 94 Triticum durum/Aegilops tauschii synthetic wheat accessions tested, CI142 (Garza/Boy// Ae. squarrosa 271) was found to be resistant to 6 Chinese PST races. The resistance to stripe rust in CI142 was proven to be controlled by a single dominant gene, tentatively designated YrC142 . Gene postulation showed that the pathogenic specificity of CI142 is different from 21 other lines possessing known resistance genes, such as Yr10, Yr15, Yr24 , and Yr26 , located on chromosome 1B. Bulked segregant analysis (BSA) and F 2 segregation analysis of the CI142/Mingxian 169 cross were used to analyse the SSR markers linked to YrC142 . Five SSR markers were found to be closely associated with YrC142 in the order Xwmc419-YrC142-Xgwm273, Xbarc187-Xgwm18-Xwmc626 , in which the relative genetic distances of these SSR loci to the gene YrC142 were 5.4, 0.8, 0.8, 1.0, and 2.4 cM, respectively. Two SSR markers ( Xgwm273 −162 and Xgwm18 −168 ) distinguished YrC142 from Yr10, Yr15, Yr24 , and Yr26 , suggesting that these 2 SSR markers may be used as diagnostic ones for the gene in a wheat breeding program against stripe rust. Based on these findings, YrC142 is most likely a new gene or a new allele at the Yr26 locus, which provides an opportunity to diversify stripe rust-resistant resources for wheat breeding programs.

Restricted access

The presence and frequency of the resistance gene complex Lr34/Yr18 was investigated in the wheat breeding programme of the Agricultural Research Institute, Martonvásár, Hungary. A total of 226 wheat cultivars and advanced lines from Hungary and other countries were tested with an STS marker, csLV34 , to understand the distribution of the Lr34/Yr18 resistance gene complex. A 150-bp PCR fragment was amplified in 64 wheat cultivars and lines with the resistance genes Lr34/Yr18 , while a 229-bp fragment was detected in 162 genotypes without Lr34/Yr18 . The genotypes with Lr34/Yr18 accounted for 28.3% of the wheat cultivars and advanced lines tested. Among the 128 varieties and breeding lines of Martonvásár origin tested, 34 carried the Lr34/Yr18 genes, with a frequency of 26.6%. The frequency of these genes was 30.6% in genotypes of other origin. The STS marker csLV34 could be used as an effective tool for the marker-assisted selection of Lr34/Yr18 genes in breeding wheat cultivars with durable rust resistance.

Restricted access

The present study was to evaluate the survival rate of free and encapsulated Bifidobacterium bifidum BB28 under simulated gastrointestinal conditions and its stability during storage. Results showed that non-microencapsulated Bifidobacterium bifidum BB28 was more susceptible to simulated gastrointestinal conditions than microencapsulated bacteria. Microencapsulated Bifidobacterium BB28 exhibited a lower population reduction than free cells during exposure to simulated gastrointestinal conditions, the viable count of monolayer microcapsules, double layer microcapsules, and triple layer microcapsules decreased by nine magnitudes, four magnitudes, and one magnitude after 2 h, respectively. The enteric test showed that the microorganism cells were released from the monolayer, double layer, and triple layer microcapsules completely in 40 min. Moreover, the optimum storage times of free Bifidobacterium BB28, monolayer microcapsules, double layer microcapsules, and triple layer microcapsules were 21 days, 21 days, 28 days, and more than 35 days in orange juice, pure milk, and nutrition Express (a commercially available milk based drink), and the viable counts were maintained at 1×106 CFU g−1 or more, which means that the double layer and triple layer of microcapsules of B. bifidum BB28 have great potential in food application.

Restricted access

Rice sheath blight, caused by Rhizoctonia solani, is the most serious disease in the southern rice producing regions of China. The use of resistant varieties is the most economic strategy to control the disease. In this paper, a seedling inoculation method was used to evaluate rice germplasm resources for resistance to sheath blight. A total of 363 rice varieties were evaluated with a set of R. solani isolates. The results indicated that the rice varieties generally lacked resistance to R. solani, and no highly resistant/immune (HR) variety was found. However, two varieties displayed clear resistance (R) and 37 showed moderate resistance (MR) to the fungus. Overall, hybrid rice varieties have better resistance than conventional rice varieties, and among hybrid rice varieties, those with the II-32A sterile line genetic background were the most resistant. The results also indicated significant interactions between rice varieties and pathogen isolates, suggesting that an understanding of local R. solani populations is needed when recommending varieties to local growers.

Restricted access

An allometric analysis of biomass and N mass allocation of rice (Oryza sativa L.) seedlings under non-shaded (100% of full sunlight) and shaded (30% of full sunlight) treatments were conducted. The allometric slopes and the intercepts were estimated using standardized major axis regression. Results indicated that biomass was preferentially allocated to stems during plant ontogeny, and leaves and roots were isometric when rice seedlings were not shaded. Under shade, however, more biomass was allocated to leaves and stems. N mass allocation was also altered by shading in that more N mass was allocated to the aerial shoots, and plants accumulated less N mass when shaded. Our study revealed that both biomass and N mass were in accordance with the optimal partitioning theory.

Restricted access