Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Á. Klein x
  • Chemistry and Chemical Engineering x
Clear All Modify Search

Thermogravimetric analyses of sol-gel derived silica and silica-poly(vinyl acetate) (PVAc) materials show that the loss in weight between 35 and 900°C can be attributed to three distinct reactions. Samples were prepared by dissolving the reactants tetraethyl orthosilicate (TEOS), poly(vinyl acetate) (PVAc), and water in mixtures of ethanol and formamide. The lowest temperature weight loss is due to the decomposition/removal of the solvents, while the intermediate weight loss corresponds to decomposition of the PVAc. The highest temperature weight loss is related to the dehydroxylation of the silica surface. The relative amounts of ethanol and formamide have a considerable effect on processing time, drying behavior, and the resulting thermal behavior of the gels.

Restricted access

Abstract

Hybrid melting gels were prepared by a sol–gel process, starting with a mono-substituted siloxane and a di-substituted siloxane, methyltrimethoxysilane (MTES) together with dimethyldimethoxysilane (DMDES). Five gel compositions were prepared with concentrations between 50% MTES–50% DMDES and 75% MTES–25% DMDES (in mol.%). The consolidation temperature, the treatment temperature after which the melting gel no longer softens, increased from 135 to 160 °C with a decrease in the amount of the mono-substituted siloxane. The glass transition temperature, recorded with differential scanning calorimetry, decreased from −0.3 to −56.7 °C with a decrease in the amount of the mono-substituted siloxane. When a sample was heat treated isothermally for 2 h at the consolidation temperature, the glass transition temperature increased by about 15°, indicating further crosslinking of the siloxane network.

Restricted access

Abstract

The compounds [Fe(bda)(CO)2L] and [Fe(ch)(CO)2L], (bda=benzylideneacetone; ch=chalcone; L=CO, PPh3) were investigated by thermogravimetry and derivative thermogravimetry (TG and DTG). The fragmentation patterns suggest that the iron atom protects the enone fragment, so that the organic ligands break up with the loss of the pendant aromatic rings.

Restricted access