Search Results
You are looking at 1 - 10 of 10 items for :
- Author or Editor: A. Fekete x
- Biology and Life Sciences x
- Refine by Access: All Content x
The EU Chocolate Directive 2000/36/EC allows the use of the vegetable fats CBEs and CBIs up to a maximum of 5% in chocolate. Manufacturers and users must know how this has an influence on the properties of chocolate. The objective of the work reported here was to find out by systematic investigations, which effect CBEs/CBIs have on the quality parameters, hardness and heat resistance of chocolate. The influence on the hardness was tested also under extreme practical storage conditions. The quality monitoring was performed up to one year. For the determination of the heat resistance the penetrometric method was used in the temperature range 25–32 °C measuring the maximum loading force, occurring during the penetration of a cylindrical probe of 2 mm diameter with 4 mm penetration. The correlation between the average maximum loading force, relevant to the hardness of chocolate, and the temperature can be described by a linear regression at 95% confidence level. Statistical analyses (correlation analysis, residual analysis, Durban-Watson statistic) showed that it is possible to define the heat resistance of solid chocolate in the temperature range of 25–32 °C by the slope and the ordinate intercept of the regression line of the loading force vs. temperature for given parameters (composition, storage, experimental layout, etc.). For the determination of the hardness of the chocolate also the penetrometric method was used to measure the maximum loading force occurring during the penetration of a needle probe with 2 mm deformation. The hardness of the chocolate samples determined with the penetrometric method and statistical analysis (One-Way, Two-Way Analysis of Variance, Dunnett’s comparisons) is significantly dependent on the composition and storage conditions, where the storage conditions are the dominant factor. The results show that the differences in hardness between the chocolate samples with CBE/CBI and those without CBE/CBI, both stored in the cellar (cold storage), are marginal. After one week of storage the sample with CBI has nearly the same hardness as the standard sample with CB, whereas the sample with CBE was slightly softer. The differences are slightly clearer for the northern storage room (moderate temperature) and for the southern room (warm temperature). After a definite storage time the hardness of all samples increased and was in the case of the southern storage room (warm temperature) up to twice as high. The quality monitoring up to one year showed that the reason for this increase in hardness is not a special storage time but the increasing temperatures with the beginning of the warm season and the cyclic change of the temperature during day and night. So an explanation for this unexpected increase in hardness can be a thermocyclic hardening of the chocolate samples under these storage conditions.
The potentiometric electronic tongue is a new and rapidly developing technique. However, the description of the exact working mechanism is still absent. An important part of this description is the effect of the sample temperature on the measurement results. The paper reported here gives a description of the effect of temperature on results obtained with an α-Astree potentiometric electronic tongue. The yielded model was used to perform a temperature correction as if the samples were measured at room temperature (25 °c).
The objective of the work reported was to predict some sensory attributes of carrots stored under non-ideal conditions from the data obtained on taste measured by electronic tongue and on the physical properties (acoustic stiffness, cutting force, deformation work ratio and luminosity). There was a close correlation between the mechanical characteristics and the non-ideal storage time. Sensory evaluation showed significant ranking in “bite and chewing”, “sweet taste” and “global impression” attributes according to the Page test. Principal component analysis (PCA) plots were determined for the acoustic stiffness coefficient, cutting force and deformation work ratio and these showed that PC1 followed a tendency similar to that of the storage time. PCA plots were determined for the electronic tongue measurements and this PCA separated the sample groups along PC1 and PC2. We used partial least square (PLS) regression to predict “bite and chewing” from the acoustic stiffness coefficient, cutting force, and deformation work ratio with an acceptable correlation. The “sweet taste” was predicted from the electronic tongue measurement results with good correlation. The “global impression” was predicted by the acoustic stiffness coefficient, cutting force and deformation work ratio, and by the electronic tongue measurement results with close correlation.
The aim of the work was to develop a method to evaluate the effect of bread improver dosage on bread crumb texture. Standard breads were prepared to get different crumb structures when bread improver was added to the flour in a concentrate of 0.2%, 0.4% and 0.6%. The additive used in the experiments contains lecithin, ascorbic acid and alpha-amylase. Rheological tests and image analysis were performed to predict the effect of the additive. Hardness, chewiness, gumminess, cohesiveness and springiness were determined by rheological method. The rheological properties neither separately nor combined were able to discriminate the different bread crumb groups. Image processing method was developed to determine the ratio of dark to light area of the images taken of the bread slices. It was concluded that both rheological and visual parameters should be taken into account to characterize bread crumb texture.
Abstract
This study aims to predict drought periods affecting the Tokaj-Hegyalja wine region and the application of this in crop protection. The Tokaj-Hegyalja wine region is the only closed wine region in Hungary with a specific mesoclimate and a corresponding wine grape variety composition, in which climate change strongly threatens cultivation. The probability that a randomly selected day in the vegetation period will fall into a drought period in the future was estimated using the daily precipitation amount and daily maximum temperature data from the Hungarian Meteorological Service for the period 2002–2020. The Markov model, a relatively new mathematical method for the statistical investigation of weather phenomena, was used for this. Markov chains can, therefore, be a valuable tool for organizing integrated pest management. This can be used to plan irrigation, control fungal pathogens infecting the vines, and plan the success of a given vintage.
Nowadays quality measurement is an important topic in food quality control. The electronic tongue (ET) can be a useful tool in this feld. The objective of our work is to demonstrate the application potential of ET for the evaluation of different coffee, wine and carrot juice samples and to compare the results with sensory attributes. ET was able to distinguish the different coffee samples. The Arabica concentration of the samples were predicted with close correlation (R2=0.98) and low error (RMSEP=3.16). The Arabica content of commercial samples were also determined. The ET measurement results of different wine samples showed a tendency similar to the increasing ‘acidic content’ determined by sensory evaluation. The closest correlation between ET and sensory evaluation was found with the ‘acidic taste’ (R2=0.87) and the lowest prediction error was observed with the prediction of ’fruit taste’ (RMSEP=6.11). Carrot juice samples were also distinguished by ET. Sensor SRS, developed for sour taste, gave the highest correlation (r=−0.99) with the sour taste of the carrot juice samples. The conclusion is that ET is a useful instrument in the feld of food quality control when appropriate statistical methods are applied.
A new liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed to confirm chloramphenicol (CAP) residues in foods of animal origin and in urine samples, which were earlier found positive under the screening analysis, performed by competitive enzyme-linked immunoassay (ELISA) technique. The developed LC-MS/MS method was applied to four non-compliant samples from 2008 to 2012; giving concentrations of CAP residues from 1.18 to 3.68 μg kg−1. All samples, qualified positive by ELISA, were confirmed with the LC-MS/MS technique and found to be non-compliant. The effectiveness of the confirmatory method was proven by participating in a successful proficiency test in year 2010. Both LC-MS/MS and ELISA methods were validated according to the European Union 2002/657/EC decision. The decision limit of the confirmatory method was determined as 0.02 μg kg−1 for CAP in each validated matrix, while the detection capability of the screening test was 0.15 μg kg−1.
Efforts have been made to predict the sensory profile of coffee samples by instrumental measurement results. The objective of the work was to evaluate the most important sensory attributes of coffee samples prepared from ground roasted coffee by electronic tongue and by sensory panel. Further aim was to predict the Arabica concentration and the main sensory attributes of the different coffee blends by electronic tongue and to analyze the sensitivity of the electronic tongue to the detection of poor quality coffee samples. Five coffee blends with known Arabica and Robusta concentration ratio, five commercially available coffee blends and a poor quality coffee were analyzed. The electronic tongue distinguished the coffee samples according to the Arabica and Robusta content. The sensory panel was able to discriminate the samples based on global aroma, bitterness and coffee aroma intensity (p < 0.01). The Arabica concentration was predicted from the electronic tongue results by PLS with close correlation and low prediction error. Models were developed to predict sensory attributes of the tested coffee samples from the results obtained by the electronic instrument.
The first version of the map of the Hungarian vegetation-based landscape regions were prepared at the scale of 1: 200,000 (1 km or higher resolution). The primary goal of the map was to provide an exact background for the presentation and evaluation of the data of the MÉTA database. Secondly, we intended to give an up-to-date and detailed vegetation-based division of Hungary with a comprehensive nomenclature of the regions. Regions were primarily defined on the basis of their present zonal vegetation, or their dominant extrazonal or edaphic vegetation. Where this was not possible, abiotic factors that influence the potential vegetation, the flora were taken into consideration, thus, political and economical factors were ignored. All region borders were defined by local expert botanists, mainly based on their field knowledge. The map differs in many features from the currently used, country-wide, flora-or geography-based divisions in many features. We consider our map to be temporary (i.e. a work map), and we plan to refine and improve it after 5 years of testing.