Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: A. Souza x
- Biology and Life Sciences x
- Refine by Access: All Content x
The aim of this work was to evaluate, by comet assay, the possible inducing of DNA lesions in peripheral blood mononuclear cells of rats subjected to acute or chronic food deprivation. Wistar male rats were subjected to 72 h of partial (50%), or total acute food deprivation, and then allowed to recover for different time periods (24, 48 and 72 h). In other experiments, comet scores were determined in peripheral blood mononuclear cells of rats subjected to chronic food deprivation (25% and 50%) for 50 days. Blood aliquots were obtained before, during and after food deprivation. Comet assay was carried out, the comet units photographed and scored (class 0 up to 3). Acute and chronic food-deprived rats presented peripheral blood mononuclear cells with DNA lesions (comet classes 1, 2 and 3) and a significant increase ( p < 0.05) in the number of comet units compared with its basal level. The increase was proportional to acute food deprivation time, but after being taken off, it progressively returned to basal level after 48 h (partial group) or 72 h (total group). Chronic food-deprived rats presented a progressive increase of comet score up to 5 days, and a decrease thereafter to reach a basal level. Possible mechanisms of DNA lesions are discussed.
Since ancient times propolis has been employed for many human purposes because to their favourable properties. Blood constituents labeled with technetium-99m (99mTc) have been used in nuclear medicine procedures. Some authors have reported that synthetic or natural drugs can interfere with the labeling of blood constituents with 99mTc. The aim of this work was to evaluate the action of a propolis extract on the labeling of blood elements with 99mTc. Samples of whole blood of male Wistar rats were incubated in sequence with an aqueous propolis extract at different concentrations, stannous chloride and 99mTc, as sodium pertechnetate. Blood samples were centrifuged to separate plasma and blood cells, soluble and insoluble fractions of plasma and blood cells were also separated after precipitation in trichloroacetic acid solution and centrifugation. The radioactivity was counted and the percentage of incorporated radioactivity (%ATI) for each fraction was calculated. The data obtained showed that the aqueous propolis extract used decreased significantly the %ATI in plasma proteins at higher concentration studied. Results suggest that at high concentration the constituents of this extract could alter the labeling of plasma proteins competing with same binding sites of the 99mTc on the plasma proteins or acting as antioxidant compounds.