Search Results

You are looking at 1 - 7 of 7 items for :

  • Author or Editor: Andrea Tamas x
  • Biology and Life Sciences x
Clear All Modify Search
Authors: Andrea Huisz, Tamás Kismányoky, Sándor Hoffmann, Tibor Tóth and Tamás Németh
Restricted access
Authors: Andrea Hagyó, Csilla Farkas, András Lukács, Szilveszter Csorba and Tamás Németh
Restricted access
Authors: András Paksi, Tamás Kassai, Andrea Lugasi, Attila Ombódi and Judit Dimény
Restricted access
Authors: Eszter László, P. Kiss, Gabriella Horváth, P. Szakály, Andrea Tamás and Dóra Reglődi

Pituitary adenylate cyclase activating polypeptide (PACAP ) is a multifunctional neuropeptide occurring in the nervous system as well as in the peripheral organs. Beneficial action of PACAP has been shown in different pathological processes. The strong protective effects of the peptide are probably due to its complex modulatory actions in antiapoptotic, anti-inflammatory and antioxidant pathways. In the kidney, PACAP is protective in models of diabetic nephropathy, myeloma kidney injury, cisplatin-, gentamycin- and cyclosporin-induced damages. Numerous studies have been published describing the protective effect of this peptide in renal ischemia/reperfusion. The present review focuses on the ischemia/reperfusion-induced kidney injury and gives a brief summary about the results published in this area.

Restricted access
Authors: Andrea Huisz, Steven Sleutel, Tibor Tóth, Georges Hofman, Stefaan Neve and Tamás Németh
Restricted access
Authors: Ádám Simon, János Oláh, István Komlósi, András Jávor, József Németh, Zoltán Szilvássy, Dóra Reglődi, Andrea Tamás and Levente Czeglédi

The list of orexigenic and anorexigenic peptides, those are known to alter feed intake, is continuously growing. However, most of them are studied in mammalian species. We aimed to investigate plasma level and mRNA expression of the pituitary adenylate cyclase-activating polypeptide (PACAP), gene expression of its receptor (PAC1), furthermore the gene expression of galanin (GAL), neuromedin U (NMU), and its two receptors (NMUR1 and NMUR2) in the hypothalamus, proventriculus, and jejunum of hens exposed to 40% calorie restriction. Feed restriction resulted in a 88% increase in mRNA and a 27% increase in peptide level of PACAP in proventriculus measured with qPCR and RIA, respectively. Increases were found in the gene expression of PAC1 (49%) and NMUR1 (63%) in the hypothalamus. Higher expressions of peptide encoding genes (76% for PACAP, 41% for NMU, 301% for NMUR1 and 308% for GAL, P < 0.05) were recorded in the jejunum of hens exposed to restricted nutrition. The results indicate that PACAP level responds to calorie restriction in the proventriculus and jejunum, but not in the hypothalamus and plasma.

Restricted access
Authors: Markus M. Heimesaat, Gernot Reifenberger, Viktoria Vicena, Anita Illes, Gabriella Horvath, Andrea Tamas, Balazs D. Fulop, Stefan Bereswill and Dora Reglodi

Pituitary adenylate cyclase activating polypetide (PACAP) constitutes a neuropeptide that is widely distributed in the host exerting essential cytoprotective properties, whereas PACAP−/− mice display increased susceptibility to distinct immunopathological conditions. The orchestrated interplay between the gut microbiota and the host is pivotal in immune homeostasis and resistance to disease. Potential pertubations of the intestinal microbiota in PACAP−/− mice, however, have not been addressed so far. For the first time, we performed a comprehensive survey of the intestinal microbiota composition in PACAP−/− and wildtype (WT) mice starting 2 weeks postpartum until 18 months of age applying quantitative culture-independent techniques. Fecal enterobacteria and enterococci were lower in PACAP−/− than WT mice aged 1 month and ≥6 months, respectively. Whereas Mouse Intestinal Bacteroides were slightly higher in PACAP−/− versus WT mice aged 1 and 6 months, this later in life held true for Bacteroides/Prevotella spp. (≥12 months) and lactobacilli (>15 months of age). Strikingly, health-beneficial bifidobacteria were virtually absent in the intestines of PACAP−/− mice, even when still breastfed. In conclusion, PACAP deficiency is accompanied by distinct changes in fecal microbiota composition with virtually absent bifidobacteria as a major hallmark that might be linked to increased susceptibility to disease.

Open access