Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Andrew Suk x
  • Refine by Access: All Content x
Clear All Modify Search
Studia Scientiarum Mathematicarum Hungarica
Authors:
Sophie Leuchtner
,
Carlos M. Nicolás
, and
Andrew Suk

Given a finite point set P in the plane, a subset S⊆P is called an island in P if conv(S) ⋂ P = S. We say that S ⊂ P is a visible island if the points in S are pairwise visible and S is an island in P. The famous Big-line Big-clique Conjecture states that for any k ≥ 3 and l ≥ 4, there is an integer n = n(k, l), such that every finite set of at least n points in the plane contains l collinear points or k pairwise visible points. In this paper, we show that this conjecture is false for visible islands, by replacing each point in a Horton set by a triple of collinear points. Hence, there are arbitrarily large finite point sets in the plane with no 4 collinear members and no visible island of size 13.

Restricted access
Studia Scientiarum Mathematicarum Hungarica
Authors:
David Conlon
,
Jacob Fox
,
Xiaoyu He
,
Dhruv Mubayi
,
Andrew Suk
, and
Jacques Verstraëte

For positive integers 𝑛, 𝑟, 𝑠 with 𝑟 > 𝑠, the set-coloring Ramsey number 𝑅(𝑛; 𝑟, 𝑠) is the minimum 𝑁 such that if every edge of the complete graph 𝐾𝑁 receives a set of 𝑠 colors from a palette of 𝑟 colors, then there is guaranteed to be a monochromatic clique on 𝑛 vertices, that is, a subset of 𝑛 vertices where all of the edges between them receive a common color. In particular, the case 𝑠 = 1 corresponds to the classical multicolor Ramsey number. We prove general upper and lower bounds on 𝑅(𝑛; 𝑟, 𝑠) which imply that 𝑅(𝑛; 𝑟, 𝑠) = 2Θ(𝑛𝑟) if 𝑠/𝑟 is bounded away from 0 and 1. The upper bound extends an old result of Erdős and Szemerédi, who treated the case 𝑠 = 𝑟 − 1, while the lower bound exploits a connection to error-correcting codes. We also study the analogous problem for hypergraphs.

Restricted access