Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Attila Pethő x
  • Mathematics and Statistics x
Clear All Modify Search

Abstract

We consider biquadratic number fields whose maximal orders have power integral bases consisting of units. We prove an effective and efficient criteria to decide whether the maximal order of a biquadratic field has a unit power integral basis or not. In particular we can determine all trivial biquadratic fields whose maximal orders have a unit power integral basis.

Restricted access

Abstract  

In this paper we present a new one-way function with collision resistance. The security of this function is based on the difficulty of solving a norm form equation. We prove that this function is collision resistant, so it can be used as a one-way hash function. We show that this construction probably provides a family of one-way functions.

Restricted access
Periodica Mathematica Hungarica
Authors: Shigeki Akiyama, Horst Brunotte and Attila Pethő

Abstract  

The concept of a canonical number system can be regarded as a natural generalization of decimal representations of rational integers to elements of residue class rings of polynomial rings. Generators of canonical number systems are CNS polynomials which are known in the linear and quadratic cases, but whose complete description is still open. In the present note reducible CNS polynomials are treated, and the main result is the characterization of reducible cubic CNS polynomials.

Restricted access
Periodica Mathematica Hungarica
Authors: Shigeki Akiyama, Horst Brunotte, Attila Pethő and Wolfgang Steiner

Summary  

The periodicity of sequences of integers \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $(a_{n})_{n\in\mathbb Z}$ \end{document} satisfying the inequalities

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$0 \le a_{n-1}+\lambda a_n +a_{n+1} < 1 \ (n \in {\mathbb Z})$$ \end{document}
is studied for real \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $ \lambda $ \end{document} with \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $|\lambda|< 2$ \end{document}. Periodicity is proved in case \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $ \lambda $ \end{document} is the golden ratio; for other values of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $ \lambda $ \end{document} statements on possible period lengths are given. Further interesting results on the morphology of periods are illustrated. The problem is connected to the investigation of shift radix systems and of Salem numbers.

Restricted access
Acta Mathematica Hungarica
Authors: Shigeki Akiyama, Tibor Borbély, Horst Brunotte, Attila Pethő and Jörg M. Thuswaldner

Summary We are concerned with families of dynamical systems which are related to generalized radix representations. The properties of these dynamical systems lead to new results on the characterization of bases of Pisot number systems as well as canonical number systems.

Restricted access