Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Ch. Li x
  • Refine by Access: All Content x
Clear All Modify Search

This study was conducted to assess the effects of 2,4-epibrassionolide (EBR) on mold decay caused by Rhizopus stolonifer and its capability to activate biochemical defense reactions in postharvest peaches. The treatment of EBR at 5 μM possessed the optimum effectiveness on inhibiting the Rhizopus rot in peach fruit among all treatments. The EBR treatment significantly up-regulated the expression levels of a set of defense-related enzymes and PR genes that included PpCHI, PpGns1, PpPAL, PpNPR1, PpPR1 and PpPR4 as well as led to an enhancement for biosynthesis of phenolics and lignins in peaches during the incubation at 20 °C. Interestingly, the EBR-treated peaches exhibited more striking expressions of PR genes and accumulation of antifungal compounds upon inoculation with the pathogen, indicating a priming defense could be activated by EBR. On the other hand, 5 μM EBR exhibited direct toxicity on fungal proliferation of R. stolonifer in vitro. Thus, we concluded that 5 μM EBR inhibited the Rhizopus rot in peach fruit probably by a direct inhibitory effect on pathogen growth and an indirect induction of a priming resistance. These findings provided a potential alternative for control of fungal infection in peaches during the postharvest storage.

Restricted access

Summary  

The removal of heavy metal ion Co(II) from aqueous solution was studied usingg-Al2O3 by batch technique. The experiments were performed at T=20±2 °C, in 0.01M NaNO3 solutions and under aerobic conditions. The effect of pH, ionic strength, fulvic acid (FA) and alumina amount on the sorption of Co(II) on alumina were also investigated. The pH affected the sorption of Co(II) significantly as compared with the effect of FA and ionic strength. The results indicated that strong chemical bonds are formed between Co(II) and functional groups of the bare or FA coated alumina, and a precipitation of Co(II) takes place on the alumina surface, induced by a transition from the adsorption to surface. The addition sequences of Co/FA on Co(II) sorption were also studied: the sorption of Co(II) in the ternary system was found independent of addition sequences.

Restricted access

Abstract  

N,N-dimethylhydroxylamine (DMHA) is a novel salt-free reducing reagent used in the separation U from Pu and Np in the reprocessing of power spent fuel. This paper reports on the radiolysis of aqueous DMHA solution and its radiolytic liquid organics. Results show that the main organics in irradiated DMHA solution are N-methyl hydroxylamine, formaldehyde and formic acid. The analysis of DMHA and N-methyl hydroxylamine were performed by gas chromatography, and that of formaldehyde was performed by ultraviolet–visible spectrophotometry. The analysis of formic acid was performed by ion chromatography. For 0.1–0.5 mol L−1 DMHA irradiated to 5–25 kGy, the residual DMHA concentration is (0.07–0.47) mol L−1, the degradation rate of DMHA at 25 kGy is 10.1–30.1%. The concentrations of N-methylhydroxylamine, formaldehyde and formic acid are (8.25–19.36) × 10−3, (4.20–36.36) × 10−3 and (1.35–10.9) × 10−4 mol L−1, respectively. The residual DMHA concentration decreases with the increasing dose. The concentrations of N-methylhydroxylamine and formaldehyde increase with the dose and initial DMHA concentration, and that of formic acid increases with the dose, but the relationship between the concentration of formic acid and initial DMHA concentration is not obvious.

Restricted access

Abstract

Oleogels have been extensively investigated in the food processing in recent years, and they have become one of the healthier alternative. The possibility of constructing oleogel material in a manner similar to hydrocolloid gel has now been gradually becoming a reality. In this regard, this review provides coverage of the latest developments and applications of oleogels in terms of preparation strategies, physicochemical properties, health aspects, and potential food applications. Both solid fat content and crystallisation behaviour are discussed for oleogels fabricated by gelators and under different conditions. Oleogels could replace hydrogenated vegetable oils in food product, reduce the fatty acid content, and be used to prepare food products such as meat, ice-cream, chocolate, bread, and biscuits with desirable properties. The aims were to assess the formation mechanism, construction methods of oleogels and the advance on the application of oleogel structures in the food field, as well as the further exploration of oleogels and in complex food systems in the future.

Open access
Cereal Research Communications
Authors:
N. Zhang
,
R.Q. Pan
,
J.J. Liu
,
X.L. Zhang
,
Q.N. Su
,
F. Cui
,
C.H. Zhao
,
L.Q. Song
,
J. Ji
, and
J.M. Li

Plants with deficiency in Gibberellins (GAs) biosynthesis pathway are sensitive to exogenous GA3, while those with deficiency in GAs signaling pathway are insensitive to exogenous GA3. Thus, exogenous GA3 test is often used to verify whether the reduced height (Rht) gene is involved in GAs biosynthesis or signaling pathway. In the present study, we identified the genetic factors responsive to exogenous GA3 at the seedling stage of common wheat and analyzed the response of the plant height related quantitative trait loci (QTL) to GA3 to understand the GAs pathways the Rht participated in. Recombinant inbred lines derived from a cross between KN9204 and J411 with different response to exogenous GA3 were used to screen QTL for the sensitivity of coleoptile length (SCL) and the sensitivity of seedling plant height (SSPH) to exogenous GA3. Two additive QTL and two pairs of epistatic QTL for SCL were identified, meanwhile, two additive QTL and three pairs of epistatic QTL for SSPH were detected. For the adult plant height (PH) investigated in two environments, six additive QTL were identified. Three QTL qScl-4B, qSsph-4B and qPh-4B were mapped in one cluster near the functional marker Rht-B1b. When PH were conditional on SSPH, the absolute additive effect value of qPh-4B and qPh-6B were reduced, suggesting that the Rhts in both two QTL were insensitive to exogenous GA3, while the additive effect values of qPh-2B, qPh-3A, qPh-3D and qPh-5A were not significantly changed, indicating that the Rhts in these QTL were sensitive to exogenous GA3, or they were not expressed at the seedling stage.

Restricted access
Cereal Research Communications
Authors:
W.F. Song
,
Z.Y. Ren
,
Y.B. Zhang
,
H.B. Zhao
,
X.B. Lv
,
J.L. Li
,
C.H. Guo
,
Q.J. Song
,
C.L. Zhang
,
W.L. Xin
, and
Z.M. Xiao

Two lines, L-19-613 and L-19-626, were produced from the common wheat cultivar Longmai 19 (L-19) by six consecutive backcrosses using biochemical marker-assisted selection. L-19 (Glu-D1a, Glu-A3c/Gli-A1?; Gli-A1? is a gene coding for unnamed gliadin) and L-19-613 (Glu-D1d, Glu-A3c/Gli-A1?) formed a set of near-isogenic lines (NILs) for HMW-GS, while L-19-613 and L-19-626 (Glu-D1d, Glu-A3e/Gli-A1m) constituted another set of NILs for the LMW-GS/gliadins. The three L-19 NILs were grown in the wheat breeding nursery in 2007 and 2008. The field experiments were designed using the three-column contrast arrangement method with four replicates. The three lines were ranked as follows for measurements of gluten strength, which was determined by the gluten index, Zeleny sedimentation, the stability and breakdown time of the farinogram, the maximum resistance and area of the extensogram, and the P andWvalues of the alveogram: L-19-613 > L-19-626 > L-19. The parameters listed above were significantly different between lines at the 0.05 or 0.01 level. The Glu-D1 and Glu-A3/Gli-A1 loci had additive effects on the gluten index, Zeleny sedimentation, stability, breakdown time, maximum resistance, area, P and W values. Although genetic variation at the Glu-A3/Gli-A1 locus had a great influence on wheat quality, the genetic difference between Glu-D1d and Glu-D1a at the Glu-D1 locus was much larger than that of Glu-A3c/Gli-A1? and Glu-A3e/Gli-A1m at the Glu-A3/Gli-A1 locus. Glu-D1d had negative effects on the extensibility and the L value compared with Glu-D1a. In contrast, Glu-A3c/Gli-A1? had a positive effect on these traits compared with Glu-A3e/Gli-A1m.

Restricted access
Journal of Behavioral Addictions
Authors:
Wei Hong
,
Peipeng Liang
,
Yu Pan
,
Jia Jin
,
Lijuan Luo
,
Ying Li
,
Chen Jin
,
Wanwan Lü
,
Min Wang
,
Yan Liu
,
Hui Chen
,
Huixing Gou
,
Wei Wei
,
Zhanyu Ma
,
Ran Tao
,
Rujing Zha
, and
Xiaochu Zhang

Abstract

Background and aims

Impaired value-based decision-making is a feature of substance and behavioral addictions. Loss aversion is a core of value-based decision-making and its alteration plays an important role in addiction. However, few studies explored it in internet gaming disorder patients (IGD).

Methods

In this study, IGD patients (PIGD) and healthy controls (Con-PIGD) performed the Iowa gambling task (IGT), under functional magnetic resonance imaging (fMRI). We investigated group differences in loss aversion, brain functional networks of node-centric functional connectivity (nFC) and the overlapping community features of edge-centric functional connectivity (eFC) in IGT.

Results

PIGD performed worse with lower average net score in IGT. The computational model results showed that PIGD significantly reduced loss aversion. There was no group difference in nFC. However, there were significant group differences in the overlapping community features of eFC1. Furthermore, in Con-PIGD, loss aversion was positively correlated with the edge community profile similarity of the edge2 between left IFG and right hippocampus at right caudate. This relationship was suppressed by response consistency3 in PIGD. In addition, reduced loss aversion was negatively correlated with the promoted bottom-to-up neuromodulation from the right hippocampus to the left IFG in PIGD.

Discussion and conclusions

The reduced loss aversion in value-based decision making and their related edge-centric functional connectivity support that the IGD showed the same value-based decision-making deficit as the substance use and other behavioral addictive disorders. These findings may have important significance for understanding the definition and mechanism of IGD in the future.

Open access