Search Results
You are looking at 1 - 10 of 40 items for
- Author or Editor: D. Kumar x
- Refine by Access: All Content x
Abstract
In the recent paper of this journal [7], a common fixed point theorem in G-complete fuzzy metric spaces under the t-norm Min was proved. We show that this theorem actually holds in more general situations.
Abstract
57Fe Mössbauer spectroscopy has been employed to characterize the chemical composition of iron aerosols collected from three distinct groups of sites representing remote, urban and industrially active areas. The Mössbauer spectra clearly show this environmental difference. The fact that the spectra of the samples collected from the remote areas are quite similar to those of clay minerals corroborates the view that iron aerosols are soil derived. Similarly the predominant presence of -Fe2O3 and Fe3O4 in the close vicinity of industrial activities suggests that the Mössbauer spectroscopy can help identify the anthropogenic processes against the natural ones.
Abstract
Cobalt(II) complexes of tetradentate Schiff bases of the type CoL [H2L=C20H16N2O2 (H2dsp), C21H18N2O2 (H2dst), C20H15N3O4 (H2ndsp) and C16H16N2O2 (H2salen)] have been synthesized and characterized by UV-visible, IR, and magnetic studies. Various thermodynamic parameters have been calculated for the decomposition step using TG/DTA. C20H14N2O2Co complex has the minimum and C16H14N2O2Co complex has the maximum activation energy.
Abstract
Desorption studies of137Cs from marine sediments by artificial sea water and artificial sea water devoid of individual major cations such as Na, K, Ca, Mg and Sr indicated that only Na and K were effective in the desorption of137Cs. Studies with various ionic strengths ranginf from 0.01 to 1.6M KCl and NaCl solutions showed that KCl desorbs constantly about 45%137Cs at and above an ionic strength of 0.1. In case of NaCl, the percent desorption increases linearly with ionic strength. The difference in desorption by K and Na is attributed to the contraction of the clay mineral layers by K ion and expansion of the layers by Na ion.
Wheat is one of the staple food crops in major areas of the world providing the required carbohydrate and proteins in our diet. A decrease in the total yield of wheat has been observed worldwide due to elevation in environmental temperature. Heat stress causes pollen sterility, drying of stigmatic fluid, pseudo-seed setting, empty pockets in endosperm and shrivelled seeds in wheat. Every plant system has defence mechanisms to cope up with the different environmental challenges. The defence mechanisms of wheat consist of heat responsive miRNAs, signalling molecules, transcription factors and stress associated proteins like heat shock proteins (HSPs), antioxidant enzymes etc. Wheat is sensitive to heat stress especially in stages like pollination to milky dough kernel stages is critical for growth and development. Heat stress causes an oxidative burst inside cell system followed by increase in the expression of various proteins like protein kinases, HSPs and antioxidant enzymes. These stress proteins modulate the defence mechanisms of wheat by protecting the denaturation and aggregation of nascent proteins involved in various metabolic reactions. Genetic variation has been observed with respect to expression and accumulation of these stress proteins. Exogenous treatment of various hormones, signalling molecules and chemicals has been reported to enhance the thermotolerance level of wheat under heat stress. Tools of genetic engineering have been also used to develop wheat transgenic lines with over-expression of stress proteins under heat stress condition. There is an arduous task in front of breeders and molecular biologists to develop a climate smart wheat crop with sustainable yield under the threat of global climate change.
Abstract
Bioassay technique is used for the estimation of actinides present in the body based on their excretion rate through body fluids. For occupational radiation workers urine assay is the preferred method for monitoring of chronic internal exposure. Determination of low concentrations of actinides such as plutonium, americium and uranium at low level of mBq in urine by alpha spectrometry requires pre-concentration of large volumes of urine. This article deals with standardization of analytical method for the determination of 241Am isotope in urine samples using Extraction Chromatography (EC) and 243Am tracer for radiochemical recovery. The method involves oxidation of urine followed by co-precipitation of americium along with calcium phosphate. This precipitate after treatment is further subjected to calcium oxalate co-precipitation. Separation of Am was carried out by EC column prepared by PC88-A (2-ethyl hexyl phosphonic acid 2-ethyl hexyl monoester) adsorbed on microporous resin XAD-7 (PC88A-XAD7). Am-fraction was electro-deposited and activity estimated using tracer recovery by alpha spectrometer. Ten routine urine samples of radiation workers were analyzed and consistent radiochemical recovery was obtained in the range 44–60% with a mean and standard deviation of 51 and 4.7% respectively.
Abstract
Miniature annular centrifugal contactors are nearly perfect for shielded hot-cell applications during flowsheet evaluation but these contactors require complex maintenance of electrical drive-motors during radioactive experiments. To reduce the number of electrical drives in the shielded cell, an indigenous design of miniature Taylor Couette (TC) mixing based countercurrent differential extraction column has been developed. In this paper, results of mass transfer experiments for an indigenously developed TC column with 30% TBP/aqueous nitric acid solutions are reported. The developed device worked perfectly in counter–current differential mode and demonstrated equivalence to multiple-extraction stages while working with a single electrical drive. The developed TC unit demonstrated operation with a reduced efficiency without flooding even in absence of rotor rotation. This observation is a vital step towards designing of robust contactors, which do not flood during temporary power failure or failure of drive mechanism.
The objective of the current research is to understand the degradation behavior of avanafil under different stress conditions and to develop a stability-indicating high-performance liquid chromatography (HPLC) method for simultaneous determination of degradants observed during degradation. Avanafil tablets were exposed to acid, base, water, oxidative, thermal, and photolytic degradation conditions. In acid, oxidative, thermal, and humidity degradation, significant degradation was observed. All the degradants observed during degradation were separated from known impurities of avanafil by using reverse-phase (RP)-HPLC. Mobile phase A, 0.1% trifluoro acetic acid and triethylamine in water, and mobile phase B, water and acetonitrile in the ratio of 20:80 (v/v), were used at a flow rate of 1.2 mL/min in gradient elution mode. Separation was achieved by using Inertsil ODS 3 column (3 μm, 4.6 mm × 250 mm) at 45 °C. Peak responses were recorded at 245 nm. Method capability for detecting and quantifying the degradants, which can form during stability, was proved by demonstrating the peak purity of avanafil peak in all the stressed samples. Mass balance was established by performing the assay of stressed sample against reference standard. Mass balance was found >97% for all the stress conditions. The developed analytical method was validated as per International Conference on Harmonization (ICH) guidelines. The method was found specific, linear, accurate, precise, rugged, and robust.
Abstract
Bioassay technique is used for the estimation of actinides present in the body based on their excretion rate through body fluids. For occupational radiation workers urine assay is the preferred method for monitoring of chronic internal exposure. Determination of low concentrations of actinides such as plutonium, americium and uranium at low level of mBq in urine by alpha spectrometry requires pre-concentration of large volumes of urine. This paper deals with standardization of analytical method for the determination of Pu-isotopes in urine samples using anion exchange resin and 236Pu tracer for radiochemical recovery. The method involves oxidation of urine followed by co-precipitation of plutonium along with calcium phosphate. Separation of Pu was carried out by Amberlite, IRA-400, anion exchange resin. Pu-fraction was electrodeposited and activity estimated using tracer recovery by alpha spectrometer. Twenty routine urine samples of radiation workers were analyzed and consistent radiochemical tracer recovery was obtained in the range 74–96% with a mean and standard deviation of 85 and 6% respectively.
Abstract
L III edge X-ray Absorption Fine Structure (XAFS) spectroscopic study of Eu(III) sorbed on γ-alumina from aqueous solutions of different pH (values ranging from 6 to 8) has been carried out at XAFS beam line of Elettra Synchrotron facility, Italy, in transmission mode. Extended X-ray Absorption Fine Structure spectra of reference compounds, namely, Eu2O3, Eu(OH)3 and Eu-aquo complex in solution, were also measured. The data were analyzed using the IFEFFIT suite of code. XAFS spectra of the sorption samples is dominated by the Eu–O near neighbor co-ordination at distance 2.4 ± 0.1 Å. 8–9 oxygen atoms, coming from both coordinating water molecule and oxygen atoms from alumina surface, surround the Eu(III) in the surface complex. Next near neighbor atoms in all the sorption samples consist of Al at distance ~3.6 and 3.8 Å, which on comparison with literature data indicates towards Eu(III) bidentate binding to apical oxygen of two different alumina octahedra on γ-alumina surface.