Search Results

You are looking at 1 - 9 of 9 items for :

  • Author or Editor: F. Huang x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All Modify Search

Summary  

Iodine deficiency disorders (IDD) are one of most common nutritional deficiencies in the world. The nuclear analytical methods (ENAA, SRXRF and XRF) were employed to study the effect of iodine deficiency on the metal ion changes during the stage of brain development, combined with biochemical methods. The results show that the distributions of iron, copper and zinc varied to different extent in different brain regions and subcellular fractions of the ID rat brains. These distributional changes of trace elements might be associated with the brain damage caused by the iodine deficiency.

Restricted access

Abstract  

The damage in the pup rat brain with low-level mercury exposure, and the concentration variation of trace elements in the rat hippocampus was determined by synchrotron radiation X-ray fluorescence technique (SRXRF). Meanwhile, the levels and activities of glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) in the hippocampus were also measured. The results showed that the low dose of inorganic mercury prenatal and postnatal exposure could lead to the significant increase of both copper and zinc contents and remarkable decrease of iron content in pup rat brain. Compared to the control group, the activities of antioxidant enzymes such as GSH-Px, SOD, the contents of GSH and MDA in the pup rat hippocampus of mercury-exposed group fell down obviously.

Restricted access

Abstract  

The thermal mechanical properties and degradation behaviors were studied on fibers prepared from two high-performance, heterocyclic polymers, poly(p-phenylenebenzobisthiazole) (PBZT) and poly(p-phenylenebenzobisoxazole) (PBZO). Our research demonstrated that these two fibers exhibited excellent mechanical properties and outstanding thermal and thermo-oxidative stability. Their long-term mechanical tensile performance at high temperatures was found to be critically associated with the stability of the C—O or C—S linkage at the heterocyclic rings on these polymers' backbones. PBZO fibers with the C—O linkages displayed substantially higher thermal stability compared to PBZT containing C—S linkages. High resolution pyrolysis-gas chromatography/mass spectrometry provided the information of the pyrolyzates' compositions and distributions as well as their relationships with the structures of PBZT and PBZO. Based on the analysis of the compositions and distributions of all pyrolyzates at different temperatures, it was found that the thermal degradation mechanisms for both of these heterocyclic polymers were identical. Kevlar®-49 fibers were also studied under the same experimental conditions in order to make a comparison of thermo-oxidative stability and long-term mechanical performance at high temperatures with PBZO and PBZT fibers. The data of two high-performance aromatic polyimide fibers were also included as references.

Restricted access

A rapid and sensitive method for the identification and quantification of phillyrin (POG) in Forsythia suspense is described. The phillyrin standard solution was directly infused into the ion trap mass spectrometers (IT-MS) for collecting the MSn spectra. The electrospray ionization (ESI) mass spectral fragmentation pathway of phillyrin was proposed, and the ESI-MSn fragmentation behavior of phillyrin was deduced in detail. The major product ion at m/z 355 belongs to furofuran, which was formed by loss the glucopyranoside (180 Da), and the characteristic fragment ions m/z 473, 395, 337, 309, and 249 were observed. The loss of 18 Da could arise from two different fragmentation pathways, and the observed ion was composed of a mixture of two different structural ions. Quantification of phillyrin was assigned in positive-ion mode at a product ion at m/z 557 → 355 by liquid chromatography-mass spectrometry (LC-MS). The LC-MS method was validated for linearity, sensitivity, accuracy, and precision and then used to determine the content of the phillyrin. Lastly, the LC-MS method was successfully applied to determine phillyrin in real sample F. suspense and three of its medicinal preparations in the positive mode at the first time.

Open access

Bee pollen is a health food with a wide range of nutritional and therapeutic properties. However, the bioactive compounds of bee pollen have not been extensively revealed due to low efficacy in separation. High-speed counter-current chromatography (HSCCC) and solvent extraction were applied to separate tyrosinase inhibitors from camellia pollen in this study. The camellia pollen extracts prepared with petroleum ether, ethyl acetate, and n-BuOH have tyrosinase inhibitory activity. Acidic hydrolysis could promote the tyrosinase inhibitory activity of crude sample. Three fractions with tyrosinase inhibitory activity were separated from the hydrolysate by a one-step HSCCC procedure. Among the fractions, two chemicals were sufficiently purified and identified to be levulinic acid (LA) and 5-hydroxymethylfurfural (5-HMF). The recovery was 0.80 g kg−1 pollen for LA and 1.75 g kg−1 pollen for 5-HMF; and their purity was all over 98%. The study demonstrates that HSCCC method is powerful for preparative separation of tyrosinase inhibitors from camellia pollen.

Open access
Journal of Thermal Analysis and Calorimetry
Authors: F. Xu, L. Sun, J. Zhang, Y. Qi, L. Yang, H. Ru, C. Wang, X. Meng, X. Lan, Q. Jiao, and F. Huang

Abstract  

Heat capacities of the carbon nanotubes (CNTs) with different sizes have been measured by modulated temperature differential scanning calorimetry (MDSC) and reported for the first time. The results indicated the values of C p increased with shortening length of CNTs when the diameters of CNTs were between 60 and 100 nm. However, the values of C p of CNTs were not affected by their diameter when the lengths of CNTs were 1–2 um, or not affected by the length of CNTs when their diameters were below 10 nm. The thermal stabilities of the CNTs have been studied by TG-DTG-DSC. The results of TG-DTG showed that thermal stabilities of CNTs were enhanced with their diameters increase. With lengths increase, the thermal stabilities of CNTs increased when their diameters were between 60 and 100 nm, but there is a slight decrease when their diameters were less than 60 nm. The further DSC analyses showed both released heat and T onset increased with the increase of CNTs diameters, which confirms the consistency of the results from both TG-DTG and DSC on CNTs thermal stability.

Restricted access

Abstract  

To investigate the effects of lanthanum exposure on regional distribution of inorganic elements in rat brain. Wistar rats were exposed to lanthanum chloride through oral administration at 0, 0.1, 2, and 40 mg/kg concentration for 6 months. The elements such as Cl, K, Ca, Fe, Cu, and Zn were identified in the brain slices by synchrotron radiation X-ray fluorescence (SRXRF) analysis. Differences of brain elemental distributions were noticed. Cl, Ca, and Zn were primarily concentrated in hippocampus of the controls. With the increase of the lanthanum dosage, the Ca and Zn levels significantly decreased, while the Cu levels significantly elevated in cortex, hippocampus and thalamus. Our results suggest that subchronic lanthanum exposure in rats appears to change elemental distributions in brain.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Li-Fang Song, Cheng-Li Jiao, Chun-Hong Jiang, Jian Zhang, Li-Xian Sun, Fen Xu, Qing-Zhu Jiao, Yong-Heng Xing, F. L. Huang, Yong Du, Zhong Cao, Fen Li, and Jijun Zhao

Abstract

One-three-dimensional metal-organic frameworks Mg1.5(C12H6O4)1.5(C3H7NO)2 (MgNDC) has been synthesized solvothermally and characterized by single crystal XRD, powder XRD, FT-IR spectra. The low-temperature molar heat capacities of MgNDC were measured by temperature modulated differential scanning calorimetry (TMDSC) over the temperature range from 205 to 470 K for the first time. No phase transition or thermal anomaly was observed in the experimental temperature range. The thermodynamic parameters of MgNDC such as entropy and enthalpy relative to reference temperature of 298.15 K were derived based on the above molar heat capacities data. Moreover, the thermal stability and decomposition of MgNDC was further investigated through thermogravimetry (TG)–mass spectrometer (MS). Three stages of mass loss were observed in the TG curve. TG–MS curve indicated that the oxidative degradation products of MgNDC are mainly H2O, CO2, NO, and NO2.

Restricted access

Shuganjieyu (SGJY) capsule is a classical formula widely used in Chinese clinical application. In this paper, an ultra-performance liquid chromatography coupled with electrospray ionization and ion trap mass spectrometry has been established to separate and identify the chemical constituents of SGJY and the multiple constituents of SGJY in rats. The chromatographic separation was performed on a C18 RRHD column (150 × 2.1 mm, 1.8 μm), while 0.1% formic acid–water and 0.1% formic acid–acetonitrile was used as mobile phase. Mass spectral data were acquired in both positive and negative modes. On the basis of the characteristic retention time (R t) and mass spectral data with those of reference standards and relevant references, 73 constituents from the SGJY and 15 ingredients including 10 original constituents and 5 metabolites from the rat plasma after oral administration of SGJY were identified or tentatively characterized. This study provided helpful chemical information for further pharmacology and active mechanism research on SGJY.

Open access