Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: F. Ni x
  • Chemistry and Chemical Engineering x
Clear All Modify Search

Abstract  

Oxygen and fluorine have been simultaneously determined by 14-MeV INAA in samples containing boron. Both boron and fluorine can cause serious interferences in the determination of oxygen. The fluorine and boron interference corrections for oxygen determination have been determined to be 0.43±0.01 and 0.0832±0.0017 apparent g oxygen per g of fluorine and boron, respectively, for our system. Boron can be determined in the same sample by a second irradiation. Mutual interferences have been evaluated and the procedure has been applied to NIST SRM and several other compounds.

Restricted access
Authors: M. Ebihara, Y. S. Chung, W. Chueinta, B.-F. Ni, T. Otoshi, Y. Oura, F. L. Santos, F. Sasajima, Sutisna and A. K. B. H. Wood

Summary  

Seven Asian countries have been collaborating in collecting airborne particulate matter (APM) in their individual countries and analyzing them by neutron activation analysis as a common analytical tool. APM samples were collected into two fractions of fine and coarse grains (PM2 and PM2-10, respectively). Analytical data were compared from several viewpoints such as particulate sizes, locality of sampling sites (either urban or rural) and geographical location of participating countries. Chemical composition and their monthly variations as well as mass concentrations appear to be highly characteristic for individual sampling sites, suggesting that NAA data are suitable for evaluating the air quality in each site.

Restricted access
Authors: M. Ebihara, Y. Chung, H. Dung, J. Moon, B. Ni, T. Otoshi, Y. Oura, F. Santos, F. Sasajima, Sutisna, B. Wee, W. Wimolwattanapun and A. Wood

Abstract  

Air particulate matter (APM) samples (PM2.5 and PM10–2.5) were collected at 13 sampling points in 8 Asian countries and their chemical compositions were determined by using neutron activation analysis (NAA) with the k 0-standardization method in addition to conventional comparative method of NAA. Analytical data showed that mass concentration and elemental composition of the APM collected are variable in terms of time and space, and are related to the characteristics of the sampling sites concerned. NAA was proved to be highly effective for the regional characterization of APM in chemical composition.

Restricted access
Authors: Y.-F. Yang, X.-Y. Lai, G.-L. Huang, Y.-H. Chen, X.-P. Du, Z.-D. Jiang, F. Chen and H. Ni

Bee pollen is a health food with a wide range of nutritional and therapeutic properties. However, the bioactive compounds of bee pollen have not been extensively revealed due to low efficacy in separation. High-speed counter-current chromatography (HSCCC) and solvent extraction were applied to separate tyrosinase inhibitors from camellia pollen in this study. The camellia pollen extracts prepared with petroleum ether, ethyl acetate, and n-BuOH have tyrosinase inhibitory activity. Acidic hydrolysis could promote the tyrosinase inhibitory activity of crude sample. Three fractions with tyrosinase inhibitory activity were separated from the hydrolysate by a one-step HSCCC procedure. Among the fractions, two chemicals were sufficiently purified and identified to be levulinic acid (LA) and 5-hydroxymethylfurfural (5-HMF). The recovery was 0.80 g kg−1 pollen for LA and 1.75 g kg−1 pollen for 5-HMF; and their purity was all over 98%. The study demonstrates that HSCCC method is powerful for preparative separation of tyrosinase inhibitors from camellia pollen.

Open access