Search Results

You are looking at 1 - 10 of 17 items for :

  • Author or Editor: Feng Qi x
  • Chemistry and Chemical Engineering x
Clear All Modify Search
Authors: C. Zhang, Y. Zhao, S. Feng, C. Qi, Z. Fu, F. Guo and R. Wang

Abstract  

To increase the tumor uptake of Val-Gly-Gly (VGG), adenine was introduced into the peptide. N-mercaptoacetyl-VGG-adenine (MAVGG-adenine) and MAVGG were labeled with 99mTc using a solution of SnCl2 and tartaric acid as reducing agent. Biodistribution in mice bearing the S180 tumor was measured and γ imaging was performed. Compared with MAVGG, adenine conjugated MAVGG had higher tumor uptake and tumor to normal tissue ratios, which suggested that the tumor uptake property of a peptide may be improved by introducing a nucleotide base. The high contrasted tumor images of 99mTc-MAVGG-adenine also suggested its potential utility as tumor imaging agent.

Restricted access
Authors: Y. Zhao, C. Zhang, C. Qi, S. Feng, G. You, Z. Fu, F. Guo and R. Wang

Abstract  

Two peptide ligands conjugated adenine, [9-N-(tritylmercapto acetyl diglycyl aminoethyl) adenine, Tr-MAG2-Ade] and [9-N-(tritylmercapto acetyl triglycyl aminoethyl) adenine, Tr-MAG3-Ade], are synthesized and labeled with 99mTc by directly labeling method. The stability of 99mTc-MAG2-adenine and 99mTc-MAG3-adenine in vitro is measured. The uptake radios of tumor to muscle at 3h post-injection are 5.70 and 4.92, respectively. The biodistribution and scintigraphic imaging studies show that the two complexes have high localization in tumor and high contrasted tumor images can be obtained, which suggest their potential utility as tumor imaging agents. But the high radioactivity of abdomen could prevent the tumor imaging in this area.

Restricted access

The leaves of Hibiscus sabdariffa L. are one of the sources of food and traditional medicine. A combination of high-performance thin-layer chromatography (HPTLC) bioautographic assay with mass spectrometry (MS) has been performed to screen and identify the antioxidant compounds in the leaves of H. sabdariffa L. The crude extract of H. sabdariffa L. was separated on silica gel 60 HPTLC plates in an automatic developing chamber (ADC2) with toluene–ethyl acetate–formic acid–methanol (6:6:1.6:1, v/v) as the mobile phase. Antioxidant bands were visualized by dipping in 2,2-diphenyl-1-picrylhydrazyl (DPPH) reagent. Five antioxidant compounds were identified as neochlorogenic acid (1), chlorogenic acid (2), cryptochlorogenic acid (3), rutin (4), and isoquercitrin (5), which could be the predominant contributors to the antioxidant activity of the leaves of H. sabdariffa L. Furthermore, principal component analysis (PCA) was carried out to discriminate ten accessions of H. sabdariffa L. using an image-processing software. This simple HPTLC fingerprint assisted by PCA can be used as a reliable method for the discrimination of different accessions of H. sabdariffa L.

Restricted access

Exploring antibiotic resistant mechanism by microcalorimetry

Determination of thermokinetic parameters of metallo-β-lactamase L1 catalyzing penicillin G hydrolysis

Authors: Hui-Zhou Gao, Qi Yang, Xiao-Yan Yan, Zhu-Jun Wang, Ji-Li Feng, Xia Yang, Sheng-Li Gao, Lei Feng, Xu Cheng, Chao Jia and Ke-Wu Yang

Abstract

In an effort to probe the reaction of antibiotic hydrolysis catalyzed by B3 metallo-β-lactamase (MβL), the thermodynamic parameters of penicillin G hydrolysis catalyzed by MβL L1 from Stenotrophomonas maltophilia were determined by microcalorimetric method. The values of activation free energy ΔG θ are 88.26, 89.44, 90.49, and 91.57 kJ mol−1 at 293.15, 298.15, 303.15, and 308.15 K, respectively, activation enthalpy ΔH θ is 24.02 kJ mol−1, activation entropy ΔS θ is −219.2511 J mol−1 K−1, apparent activation energy E is 26.5183 kJ mol−1, and the reaction order is 1.0. The thermodynamic parameters reveal that the penicillin G hydrolysis catalyzed by MβL L1 is an exothermic and spontaneous reaction.

Restricted access
Authors: Li Bai Xiao, Xiao Ling Xing, Xue Zhong Fan, Feng Qi Zhao, Zhi Ming Zhou, Hai Feng Huang, Ting An, Hai Xia Hao and Qing Pei

Abstract

The enthalpies of dissolution for di(N,N-di(2,4,6,-trinitrophenyl)amino)-ethylenediamine (DTAED) in dimethyl sulfoxide (DMSO) and N-methyl pyrrolidone (NMP) were measured using a RD496-2000 Calvet microcalorimeter at 298.15 K. Empirical formulae for the calculation of the enthalpies of dissolution (Δdiss H) were obtained from the experimental data of the dissolution processes of DTAED in DMSO and NMP. The linear relationships between the rate (k) and the amount of substance (a) were found. The corresponding kinetic equations describing the two dissolution processes were for the dissolution of DTAED in DMSO, and for the dissolution of DTAED in NMP, respectively.

Restricted access
Authors: Han Jing-Tian, Shao Hua, Zhu Jian-Kang, Bao Bo-Rong, Cao Feng-Qi and Wu Zi-Mei

Abstract  

N-dodecanoylpyrrolidine (DOPOD) was synthesized and used for the extraction of nitric acid and uranyl(VI) ions from nitric media in toluene. The effects of nitric acid concentration, extractant concentration, temperature, salting-out agent (LiNO3) have been studied. The main adduct of DOPOD and HNO3 is HNO3·DOPOD. The complex formation of uranyl(VI) ion, nitrate ion and DOPOD (UO2(NO3)2·2DOPOD) as extracted species are further confirmed by IR spectra and the values of thermodynamic parameters have also been calculated.

Restricted access
Authors: Kang-Zhen Xu, Yong-Shun Chen, Min Wang, Jin-An Luo, Ji-Rong Song, Feng-Qi Zhao and Rong-Zu Hu

Abstract

A novel energetic material, 4,5-dihydroxyl-2-(dinitromethylene)-imidazolidine (DDNI), was synthesized by the reaction of FOX-7 and glyoxal in water at 70 °C. Thermal behavior of DDNI was studied with DSC and TG-DTG methods, and presents only an intense exothermic decomposition process. The apparent activation energy and pre-exponential factor of the decomposition reaction were 286.0 kJ mol−1 and 1031.16 s−1, respectively. The critical temperature of thermal explosion of DDNI is 183.78 °C. Specific heat capacity of DDNI was studied with micro-DSC method and theoretical calculation method, and the molar heat capacity is 217.76 J mol−1 K−1 at 298.15 K. The adiabatic time-to-explosion was also calculated to be a certain value between 14.54 and 16.34 s. DDNI presents lower thermal stability, for its two ortho-hydroxyl groups, and its thermal decomposition process becomes quite intense.

Restricted access
Authors: L. Ji-zhen, F. Xue-zhong, H. Rong-zu, Z. Xiao-dong, Z. Feng-qi and G. Hong-Xu

Abstract  

The thermal behavior of copper(II) 4-nitroimidazolate (CuNI) under static and dynamic states are studied by means of high-pressure DSC (PDSC) and TG with the different heating rates and the combination technique of in situ thermolysis cell with rapid-scan Fourier transform infrared spectroscopy (thermolysis/RSFTIR). The results show that the apparent activation energy and pre-exponential factor of the major exothermic decomposition reaction of CuNI obtained by Kissinger’s method are 233.2 kJ mol−1 and 1017.95 s−1, respectively. The critical temperature of the thermal explosion and the adiabatic time-to-explosion of CuNI are 601.97 K and 4.4∼4.6 s, respectively. The decomposition of CuNI begins with the split of the C-NO2 and C-H bonds, and the decomposition process of CuNI under dynamic states occurs less readily than those under static states because the dynamic nitrogen removes the strong oxidative decomposition product (NO2). The above-mentioned information on thermal behavior is quite useful for analyzing and evaluating the stability and thermal charge rule of CuNI.

Restricted access

Abstract  

The thermal decomposition mechanism of hydrazine 3-nitro-1,2,4-triazol-5-one (HNTO) compound was studied by means of differential scanning calorimetry (DSC), thermogravimetry and derivative thermogravimetry (TG-DTG), and the coupled simultaneous techniques of in situ thermolysis cell with rapid scan Fourier transform infrared spectroscopy (in situ thermolysis/RSFTIR). The thermal decomposition mechanism is proposed. The quantum chemical calculation on HNTO was carried out at B3LYP level with 6-31G+(d) basis set. The results show that HNTO has two exothermic decomposition reaction stages: nitryl group break first away from HNTO molecule, then hydrazine group break almost simultaneously away with carbonyl group, accompanying azole ring breaking in the first stage, and the reciprocity of fragments generated from the decomposition reaction is appeared in the second one. The C–N bond strength sequence in the pentabasic ring (shown in Scheme 1) can be obtained from the quantum chemical calculation as: C3–N4 > N2–C3 > N4–C5 > N1–C5. The weakest bond in NTO is N7–C3. N11–N4 bond strength is almost equal to N4–C5. The theoretic calculation is in agreement with that of the thermal decomposition experiment.

Restricted access

BTATz-CMDB propellants

High-pressure thermal properties and their correlation with burning rates

Authors: Jian-Hua Yi, Feng-Qi Zhao, Ying-Hui Ren, Bo-Zhou Wang, Cheng Zhou, Xiao-Ning Ren, Si-Yu Xu, Hai-Xia Hao and Rong-Zu Hu

Abstract

The high-pressure thermal properties and their correlation with burning rates of the composite modified double base (CMDB) propellants containing 3,6-bis (1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine (BTATz), a substitute of hexogen (RDX), were investigated using the high-pressure differential scanning calorimetry (PDSC). The results show that there is a main exothermal decomposition process with the heating of each propellant. High pressure can restrain the volatilization of NG, accelerate the main decomposition reaction, and make the reaction occur easily. High pressure can change the main decomposition reaction mechanism function and kinetics, and the control process obeys the rule of Avrami–Erofeev equation at high pressure and chemical reaction at normal pressure. However, the mechanism function can not be changed by the ballistic modifier. The correlation between PDSC characteristic values and burning rates was carried out and found that u and keep a good linear relation, k u keeps a similar changing trend with u, and it can be used to study the effect of the ballistic modifier or the other component on the burning rates.

Restricted access