Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: G. Wittmann x
  • Refine by Access: All Content x
Clear All Modify Search

In this study we interpret the magnetic anomalies at satellite altitude over a part of Europe and the Pannonian Basin. These anomalies are derived from the total magnetic measurements from the CHAMP satellite. The anomalies are reduced to an elevation of 324 km. An inversion method is used to interpret the total magnetic anomalies over the Pannonian Basin. A three dimensional triangular model is used in the inversion. Two parameter distributions, Laplacian and Gaussian are investigated. The regularized inversion is numerically calculated with the Simplex and Simulated Annealing methods and the anomalous source is located in the upper crust. A probable source of the magnetization is due to the exsolution of the hematite-ilmenite minerals.

Restricted access


Modifications of lens proteins play a crucial role in the formation of cataract, which is among the leading causes of world blindness in the ageing population. Although modern cataract surgery by phacoemulsification is a very successful and safe procedure, the prevention of cataract formation would be a real breakthrough in this field of ophthalmology. The aim of our study was to analyse the thermal denaturation of the cataractous lens proteins by the method of differential scanning calorimetry (DSC), to understand cataract formation and to work on its prevention possibilities. Samples were obtained from cataract patients of different age, sex, patients with and without diabetes mellitus. Samples were obtained from lenses of mature degree and progredient degree of cataract as well. Previous DSC examinations were performed on manually extracted human cataractous lens materials, however to the best of our knowledge, this is the first study, in which DSC examinations were performed on lens materials obtained by the phacoemulsification technique, which gained acceptance world-wide in the last decade.

Restricted access
Acta Geodaetica et Geophysica Hungarica
K. I. Kis
P. T. Taylor
G. Wittmann
H. R. Kim
B. Toronyi
, and
T. Mayer-Gürr

To solve a geophysical inverse problem means applying measurements to determine the parameters of the selected model. The inverse problem is formulated as the Bayesian inference. The Gaussian probability density functions are applied in the Bayes's equation. The CHAMP satellite gravity data are determined at the altitude of 400 km altitude over the South part of the Pannonian Basin. The model of interpretation is the right vertical cylinder. The parameters of the model are obtained from the minimum problem solved by the Simplex method.

Restricted access