Search Results
You are looking at 1 - 10 of 10 items for
- Author or Editor: Jian Zheng x
- Refine by Access: All Content x
Abstract
After the nuclear accident at TEPCO’s Fukushima Dai-ichi power station in March, hydrogen explosions and reactor building explosion resulted in releases of radionuclides in the environment. Severe radioactive cesium and iodine contaminations have been observed in fallout deposition samples and soils in the East Japan. Radioactive cesium, iodine, uranium, and transuranic radionuclides were set as the monitoring targets in food safety tests. However, so far, only radioactive cesium and iodine were daily measured and reported by the Ministry of Health, Labour, and Welfare. The tedious and time consuming conventional alpha spectrometric method hampered the emergency monitoring U contamination in foods. In this work, we propose a simple and rapid analytical method for 238U and 235U/238U isotope ratio analysis in fresh vegetables. This method was applied to the emergency monitoring of radioactive contamination after the nuclear accident at TEPCO’s Fukushima Dai-ichi power station. The results showed no U contamination in fresh vegetables collected in Chiba and Ibaraki prefectures in April and May, 2011.
Abstract
A study on solvent extraction of cerium/III/ ion with 1-/2-pyridylazo/-2-naphthol /PAN or HL/ in chloroform from perchloric acid solution is described. The effect of equilibrium time, the pH of the aqueous phase and the concentration centration of extractant in organic phase on the extraction efficiency of cerium/III/ has been studied. The results show that the mechanism of extraction reaction is 3Ce /aq/ 3+ + 3HL/o/ CeL3/o/ + 3H + /aq/
Abstract
The anthropogenic plutonium isotopes are important geochemical tracers for environmental studies. The distributions and sources of the Pu isotopes in water column or sediments of the North Pacific have been intensively studied. However, knowledge on the distribution of Pu isotopes in sediments of the Central Pacific, when available, is limited. To study the composition of Pu isotopes in the ocean, thus to identify the sources of radioactive pollution, sediment core samples were collected in the Central Pacific by R/V Hakuho Maru in the KH-04-5 cruise. The activity concentrations of 239+240Pu and the 240Pu/239Pu atom ratio were determined using a sector-field inductively coupled mass spectrometry (SF-ICP-MS) combined with a high efficiency sample introduction system (APEX-Q). Possible sources and sedimentation behavior of Pu isotopes are discussed.
Abstract
Gd2O3-promoted Ni/SiO2 catalysts exhibited higher activity and selectivity than Ni/SiO2 in methane autothermal reforming. The results of the temperature-programmed surface reaction of CH4 indicated that Gd2O3 might enhance anti-carbon deposition properties. The reactivity of surface carbons showed that the presence of Gd2O3 reduced the formation of inactive carbons on Ni/SiO2. Raman results suggested that the order of graphitization of deposited carbon decreases with the addition of Gd2O3.
Abstract
Sediment core samples were collected from Hiroshima Bay in the Seto Inland Sea, western Northwest Pacific Ocean, and their 239+240Pu activities and 240Pu/239Pu atom ratios were determined by sector field ICP-MS. The activities of 239+240Pu ranged from 0.556 ± 0.025 to 0.745 ± 0.023 mBq/g. The atom ratios of 240Pu/239Pu were almost constant within the whole depth; the average value was 0.227 ± 0.014. This atom ratio was significantly higher than the mean global fallout ratio of 0.18, proving the presence of close-in fallout Pu that originated from the Pacific Proving Ground (PPG). The water masses exchanges between the Kuroshio Current and the Seto Inland Sea brought the PPG source Pu to this area, then Pu was extensively scavenged into sediment particles supplied by the rivers around the bay. The relative contributions of the global fallout Pu and the PPG close-in fallout Pu were evaluated by the two end-member mixing model. The contribution of the PPG close-in fallout was 38–41% of the total Pu in sediment. The remaining 59–62% was attributed to direct global fallout and the land-origin Pu transported by the rivers around the Hiroshima Bay.
Abstract
The concentrations of up to 11 elements in subcellular fractions of human brain (normal and malignant tumor) have been determined by a combination of gradient centrifugation and INAA methods. Samples of human brain were homogenized in a glass homogenizer tube, the homogenate was separated into nuclei, mitochondrial, myelin, synaptosome fractions, and these fractions were then analyzed using the INAA method. The discussions of elemental subcellular distributions in human brain malignant tumor are presented in this paper.
Abstract
Earthworms were collected from agricultural fields in Admont, Graz, Piber and Gumpenstein, Austria. Six earthworm samples were investigated with INAA and with ICP-MS in parallel for the element concentrations of As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Pb, Rb, Sb, Se and Zn. With both techniques 14 elements were analysed in a wide concentration range (ng/g to mg/g) GF-AAS and HG-AAS were used for verification of some element concentrations. A comparison of analytical results between INAA and ICP-MS was discussed. In general, good agreement between ICP-MS and INAA was obtained, the relative difference values of most of the elements are within ±20% range, however, a methodical error for the determination of Hg by ICP-MS was found.
10-Methoxycamptothecin (MCPT) and 10-hydroxycamptothecin (HCPT) are the indole alkaloids isolated from a Chinese tree, Camptotheca acuminata, and have a wide spectrum of anticancer activity in vitro and in vivo mainly through inhibitory effects on topoisomerase I. HCPT is a major metabolite of MCPT in rats; the pharmacokinetic analysis and tissue distribution of MCPT and HCPT in rats have also been determined after i.v. injection of MCPT, but the excretion of MCPT and its metabolite HCPT has not been assessed up to now. In the present study, the excretion study of MCPT and its metabolite HCPT in rat bile, feces, and urine after i.v. administration of MCPT (5 mg kg−1) was performed by high-performance liquid chromatography (HPLC) method coupled with a fluorescence detector. The results showed that MCPT mainly biotransformed to HCPT and excreted in the form of HCPT and MCPT in bile, urine, and feces after i.v. administration of MCPT. It was excreted about 1.24 ± 0.07% as MCPT and 5.49 ± 0.40% as HCPT in bile within 6 h after i.v. administration. The cumulative excretions of MCPT and HCPT were mainly within 24 h after i.v. administration, which were 0.41 ± 0.10% and 7.66 ± 1.43% of the dosage in urine and about 0.16 ± 0.04% and 20.30 ± 3.35% of the dosage in feces. The total excretion of MCPT in urine, bile, and feces was 1.81 ± 0.09% in the form of original MCPT and 33.45 ± 1.57% detected as the metabolite HCPT in urine, bile, and feces, suggesting that MCPT might undergo other biotransformation.
Abstract
The compatibility of poly(3-nitromethyl-3-methyloxetane) (PNIMMO) with some energetic materials are studied by using pressure DSC method in detail. Cyclotetramethylenetetranitroamine (HMX), cyclotrimethylenetrinitramine (RDX), nitrocellulose (NC), nitroglycerine (NG), N-nitrodihydroxyethylaminedinitrate (DINA), and aluminum powder (Al) are used as common energetic materials, and 3,4-dinitrofurzanfuroxan (DNTF), 1,3,3-trinitroazetidine (TNAZ), hexanitrohexazaisowurtzitane (CL-20), 4,6-dinitro-5,7-diaminobenzenfuroxan (CL-14), 1,1-diamino-2,2-dinitroethylene (DADNE), and 4-amino-5-nitro-1,2,3-triazole (ANTZ) are used as new energetic materials. The results show that the binary systems of PNIMMO with HMX, RDX, NC, NG, DINA, Al, CL-14 and DADNE are compatible, with TNAZ, CL-20 and ANTZ are slightly sensitive, and with DNTF is sensitive.