Search Results

You are looking at 1 - 10 of 22 items for :

  • Author or Editor: L. Q. Zhang x
  • Biology and Life Sciences x
  • All content x
Clear All Modify Search

Salt stress is one of the major abiotic stress which severely limits plant growth and reduces crop productivity across the world. In the present study, the effects of exogenous pyridoxal-5-phosphate (vitamin B6, VB6) on seedling growth and development of wheat under salt stress were investigated. The results showed that exogenous application of pyridoxal-5-phosphate (VB6) significantly increased the RWC, biomass, the concentration of photosynthetic pigments, proline, the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), together with decreasing the content of Malondiadehyde (MDA) and hydrogen peroxide (H2O2) in wheat leaves under salt stress. Meanwhile, the transcript level of P5CR, P5CS, SOD, TaSOS1 and TaSOS4 were also up-regulated after treatment with pyridoxal-5-phosphate. VB6 acts as a signal in regulating the activities of plant antioxidant enzymes and SOS pathway to improve resistance to salt stress. The current study results may give an insight into the regulatory roles of VB6 in improving salt stress and VB6 could be an easily and effective method to improve salt-stress tolerance to wheat in the field condition. It is urgency to understand the molecular mechanism of VB6 to enhance the salt tolerance of wheat in the next work.

Restricted access
Cereal Research Communications
Authors: N. Zhang, R.Q. Pan, J.J. Liu, X.L. Zhang, Q.N. Su, F. Cui, C.H. Zhao, L.Q. Song, J. Ji, and J.M. Li

Plants with deficiency in Gibberellins (GAs) biosynthesis pathway are sensitive to exogenous GA3, while those with deficiency in GAs signaling pathway are insensitive to exogenous GA3. Thus, exogenous GA3 test is often used to verify whether the reduced height (Rht) gene is involved in GAs biosynthesis or signaling pathway. In the present study, we identified the genetic factors responsive to exogenous GA3 at the seedling stage of common wheat and analyzed the response of the plant height related quantitative trait loci (QTL) to GA3 to understand the GAs pathways the Rht participated in. Recombinant inbred lines derived from a cross between KN9204 and J411 with different response to exogenous GA3 were used to screen QTL for the sensitivity of coleoptile length (SCL) and the sensitivity of seedling plant height (SSPH) to exogenous GA3. Two additive QTL and two pairs of epistatic QTL for SCL were identified, meanwhile, two additive QTL and three pairs of epistatic QTL for SSPH were detected. For the adult plant height (PH) investigated in two environments, six additive QTL were identified. Three QTL qScl-4B, qSsph-4B and qPh-4B were mapped in one cluster near the functional marker Rht-B1b. When PH were conditional on SSPH, the absolute additive effect value of qPh-4B and qPh-6B were reduced, suggesting that the Rhts in both two QTL were insensitive to exogenous GA3, while the additive effect values of qPh-2B, qPh-3A, qPh-3D and qPh-5A were not significantly changed, indicating that the Rhts in these QTL were sensitive to exogenous GA3, or they were not expressed at the seedling stage.

Restricted access

In this study, the cDNA of homocysteine S-methyltransferase was isolated from Aegilops tauschii Coss., with the gene accordingly designated as AetHMT1. Similar to other methyltransferases, AetHMT1 contains a GGCCR consensus sequence for a possible zinc-binding motif near the C-terminal and a conserved cysteine residue upstream of the zinc-binding motif. Analysis of AetHMT1 uncovered no obvious chloroplast or mitochondrial targeting sequences. We functionally expressed AetHMT1 in Escherichia coli and confirmed its biological activity, as evidenced by a positive HMT enzyme activity of 164.516 ± 17.378 nmol min−1 mg−1 protein when catalyzing the transformation of L-homocysteine. Compared with the bacterium containing the empty vector, E. coli harboring the recombinant AetHMT1 plasmid showed much higher tolerance to selenate and selenite. AetHMT1 transcript amounts in different organs were increased by Na2SeO4 treatment, with roots accumulating higher amounts than stems, old leaves and new leaves. We have therefore successfully isolated HMT1 from Ae. tauschii and characterized the biochemical and physiological functions of the corresponding protein.

Restricted access

Thinopyrum ponticum (2n = 10x = 70) has donated rust resistance genes to protect wheat from this fungal disease. In the present study, the line ES-7, derived from the progeny of the crosses between common wheat cultivar Abbondanza and Triticum aestivumTh. ponticum partial amphiploid line Xiaoyan784, was characterized by cytological, fluorescence in situ hybridization (FISH), genomic in situ hybridization (GISH) and EST-STS marker techniques. Cytological observations revealed that the configuration of ES-7 was 2n = 42 = 21 II. GISH and FISH results showed that ES-7 had two St chromosomes and lacked 5A chromosomes compared to common wheat. The 4A chromosome of ES-7 had small alterations from common wheat. Two EST-SSR markers BE482522 and BG262826, specific to Th. ponticum and tetraploid Pseudoroegneria spicata (2n = 4x = 28), locate on the homoeologous group 5 chromosomes of wheat, could amplify polymorphic bands in ES-7. It was suggested that the introduced St chromosomes belonged to homoeologous group 5, that is, ES-7 was a 5St (5A) disomic substitution line. Furthermore, ES-7 showed highly resistance to mixed stripe rust races of CYR32 and CYR33 in adult stages, which was possibly inherited from Th. ponticum. Thus, ES-7 can be used for wheat stripe rust resistance breeding program.

Restricted access

Chinese endemic wheat landraces possess unique morphological features and desirable traits, useful for wheat breeding. It is important to clarify the relationship among these landraces. In this study, 21 accessions of the four Chinese endemic wheat landrace species were investigated using single-copy genes encoding plastid Acetyl-CoA carboxylase (Acc-1) and 3-phosphoglycerate kinase (Pgk-1) in order to estimate their phylogenetic relationship. Phylogenetic trees were constructed using maximum parsimony (MP), maximum likelihood (ML) and Bayesian, and TCS network and gene flow values. The A and B genome sequences from the Pgk-1 loci indicated that three accessions of Triticum petropavlovskyi were clustered into the same subclade, and the T. aestivum ssp. tibetanum and the Sichuan white wheat accessions were grouped into a separate subclade. Based on the Acc-1 gene, T. aestivum ssp. tibetanum and T. aestivum ssp. yunnanense were grouped into one subclade in the A genome; the B genome from T. petropavlovskyi and T. aestivum ssp. tibetanum, and the Sichuan white wheat complex and T. aestivum ssp. tibetanum were grouped in the same clades. The D genome of T. aestivum ssp. yunnanense clustered with T. petropavlovskyi. Our findings suggested that (1) T. petropavlovskyi is distantly related to the Sichuan white wheat complex; (2) T. petropavlovskyi, T. aestivum ssp. tibetanum and T. aestivum ssp. yunnanense are closely related; (3) T. aestivum ssp. tibetanum is closely related to T. aestivum ssp. yunnanense and the Sichuan white wheat complex; and (4) T. aestivum ssp. tibetanum may be an ancestor of Chinese endemic wheat landraces.

Restricted access

Lipopolysaccharide and b-1,3-glucan binding protein (LGBP) is a pattern recognition receptor that can recognize and bind LPS and b-1,3-glucan. LGBP has crucial roles in innate immune defense against Gram-negative bacteria and fungi. In this study, LGBP functions in Portunus trituberculatus innate immunity were analyzed. First, the mRNA expression of PtLGBP in hemocytes, hepatopancreas, and muscle toward three typical pathogen-associated molecular patterns (PAMPs) stimulations were examined using real-time PCR. Results show that the overall trend of relative expressions of the LGBP gene in three tissues is consistent, showing up-down trend. In each group, the highest expression of the LGBP gene was at 3 and 12 h post-injection. The LGBP gene is also expressed significantly higher in the hemocytes and hepatopancreas than in the muscle. The highest level of LGBP was in the lipopolysaccharides (LPS) and glucan-injected group, whereas the lowest level was in the PGN-injected group. Furthermore, bacterial agglutination assay with polyclonal antibody specifically for PtLGBP proved that the recombinant PtLGBP (designated as rPtLGBP) could exhibit obvious agglutination activity toward Gram-negative bacteria Escherichia coli, Vibrio parahaemolyticus, and V. alginolyticus; Gram-positive bacteria Bacillus subtilis; and fungi Saccharomyces cerevisiae. LGBP in Portunus trituberculatus possibly served as a multi-functional PRR. In addition, LGBP is not only involved in the immune response against Gram-negative and fungi, as manifested in other invertebrates, but also has a significant role in anti-Gram-positive bacteria infection.

Restricted access

Molecular markers are important tools that have been used to identify the short arm of rye chromosome 1R (1RS) which contains many useful genes introgressed into wheat background. Wheat expressed sequence tag (EST) sequences are valuable for developing molecular markers since ESTs are derived from gene transcripts and more likely to be conserved between wheat and its relative species. In the present study, 35 sequence-tagged site (STS) primers were designed based on EST sequences distributed on homology group 1 chromosomes of Triticum aestivum and used to screen specific markers for chromosome 1RS of Secale cereale . Two primer pairs different from the early studies, STS WE3 , which amplified a 1680-bp and a 1750-bp fragment, and STS WE126 , which produced a 850-bp fragment from rye genome, were proved to be specific to chromosome 1RS since the corresponding fragments were only amplified from 1R chromosome addition line and wheat-rye lines with chromosome 1RS, but not from wheat-rye 2R-7R chromosome addition lines and the other lines lacking chromosome 1RS. Eleven wheat-rye lines derived from ‘Xiaoyan 6’ and ‘German White’ were used to test the presence of specific markers for 1RS. The specific fragments of 1RS were amplified in 4 wheat-rye lines, but not in the other lines. The testing results using EST-STS markers of 1RS were consistent with those obtained from fluorescence in situ hybridization (FISH), suggesting that these markers specific to 1RS could be used in marker-assisted selection (MAS) for incorporating 1RS into wheat cultivars in breeding.

Restricted access
Cereal Research Communications
Authors: L. Zhang, Z. Yan, S. Dai, Q. Chen, Z. Yuan, Y. Zheng, and D. Liu

Two experiments to investigate the crossability of Triticum turgidum with Aegilops tauschii are described. In the first experiment, 372 wide hybridization combinations were done by crossing 196 T. turgidum lines belonging to seven subspecies with 13 Ae. tauschii accessions. Without embryo rescue and hormone treatment, from the 66220 florets pollinated, 3713 seeds were obtained, with a mean crossability percentages of 5.61% which ranged from 0 to 75%. A lot of hybrid seeds could germinate and produce plants. Out of 372 combinations, 73.12% showed a very low crossability less than 5%, 23.39% showed the crossability of 5–30%, 2.69% showed the crossability of 30–50%, 0.81% showed high crossability more than 50%, respectively. Among the seven T. turgidum subspecies, there were significant differences in crossability. The ssp. dicoccoides and dicoccon showed the highest crossability, while polonicum the lowest. All the crossability percentages more than 30% were obtained from the crossing of ssp. dicoccoides or dicoccon with Ae. tauschii .In the second experiment, the genetics of crossability was investigated using T. turgidum ssp. durum cultivar Langdon and the D-genome disomic substitution lines of Langdon. Compared with the control Langdon, lines 7D(7A) and 4D(4B) showed higher crossability, which suggested that chromosomes 7A and 4B of tetraploid wheat cv. Langdon carried dominant alleles inhibiting crossability with Ae. tauschii . The relationships of present results with previously reported crossability genes of wheat are discussed.

Restricted access

Five giant embryo mutants, described as MH-gel, MH-ge2, MH-ge3, MH-ge4 and MH-ge5 , which were derived from the same indica rice cv . ‘Minghui 86’ and characterized by 2.0, 1.88, 2.08, 1.93 and 1.88 times enlarged embryo than that of wild type, were selected for the current study. The mutated giant embryos were controlled by a single recessive gene, and except mutated locus with MH-ge1 other four loci were allelic to each other and the previous reported locus ge in japonica rice cv . ‘Kinmaze’. No obvious differences in physicochemical properties such as apparent amylose content (AAC), alkali spreading value (ASV), gel consistency (GC), and starch paste viscosity were observed between giant embryo mutants and wild type. Significant increases in the contents of crude lipid (LC), crude protein (PC), Vitamin B1 (V B1 ), Vitamin B2 (V B2 ), Vitamin E (V E ), essential amino acids such as Arginine (Arg), Aspartic acid (Asp), Glutamic acid (Glu), Lysine (Lys), Methionine (Met), and mineral elements such as calcium (Ca), iron (Fe), potassium (K), phosphorus (P) and zinc (Zn) were detected in brown rice (BR) of giant embryo mutants. The amounts of gamma aminobutyric acid (GABA), an inhibitory neurotransmitter, were similar in the BR of giant embryo mutants and wild type, and more GABA content was observed in germinated brown rice (GBR) than BR. Significant enrichments were detected in the GBR of giant embryo mutants, basically corresponding to the enlarged embryo.

Restricted access

As one of the world’s earliest domesticated crops, barley is a model species for the study of evolution and domestication. Domestication is an evolutionary process whereby a population adapts, through selection; to new environments created by human cultivation. We describe the genome-scanning of molecular diversity to assess the evolution of barley in the Tibetan Plateau. We used 667 Diversity Arrays Technology (DArT) markers to genotype 185 barley landraces and wild barley accessions from the Tibetan Plateau. Genetic diversity in wild barley was greater than in landraces at both genome and chromosome levels, except for chromosome 3H. Landraces and wild barley accessions were clearly differentiated genetically, but a limited degree of introgression was still evident. Significant differences in diversity between barley subspecies at the chromosome level were observed for genes known to be related to physiological and phenotypical traits, disease resistance, abiotic stress tolerance, malting quality and agronomic traits. Selection on the genome of six-rowed naked barley has shown clear multiple targets related to both its specific end-use and the extreme environment in Tibet. Our data provide a platform to identify the genes and genetic mechanisms that underlie phenotypic changes, and provide lists of candidate domestication genes for modified breeding strategies.

Restricted access