Search Results

You are looking at 1 - 10 of 31 items for :

  • Author or Editor: L. Soledade x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All Modify Search

Thermal and kinetic study of statins

Simvastatin and lovastatin

Journal of Thermal Analysis and Calorimetry
Authors: M. Souza, Marta Conceição, M. Silva, L. Soledade, and A. Souza

Abstract  

Statins are a group of lipoproteins that are used in medicine to treat the high cholesterol level. The effectiveness of statins in reducing the cholesterol level is significant and in long time scale the reduction of the cholesterol level helps to avoid the incidence of degenerative diseases. Simvastatin and lovastatin are belonging to the ‘statins’ family, one of the pharmacologic groups used in the control of dislipidemy. The objective of this work is the thermal stability and kinetic study of the active forms of simvastatin and lovastatin. Thermal data indicated that lovastatin and simvastatin are stable up to 190 and 170°C in air and up to 205 and 203°C in nitrogen, respectively. For melting temperatures DSC curves showed good correlation with the literature data. Comparing the activation energies of the statins at heating rate of 10°C min–1, lovastatin is more stable than simvastatin under the applied experimental conditions.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Crislene Morais, C. Gameiro, P. Santa-Cruz, S. Alves Jr, L. Soledade, and A. Souza

Abstract  

The complexes of general formula Ln(btfa)3L, where Ln=Eu or Tb, btfa=4,4,4-trifluoro-1-phenyl-1,3-butanedione, L=1,10-phenanthroline (phen) or 2,2-bipyridine (bipy), were synthesized by reacting the corresponding metal chloride with the proper β-diketone and the other ligand. The complexes were obtained in the powder form and were characterized by photoluminescence and TG. Their thermal decomposition was studied by non-isothermal thermogravimetric techniques. The Eu(btfa)3bipy complex presented the highest thermal stability and it melts before being decomposed. The complex Eu(btfa)3phen presented the largest activation energy for a heating rate of 5C min–1.

Restricted access

Abstract  

The present work investigates the influence of milling and calcination atmosphere on the thermal decomposition of SrTiO3 powder precursors. Both pure and neodymium-modified SrTiO3 samples were studied. Milling did not significantly influence numerical mass loss value, but reduced the number of decomposition steps, modifying the profiles of the TG and DTA curves. On the other hand, milling increases the amount of energy liberated by the system upon combustion of organic matter. It was also observed that the milling process, associated to the calcination in an oxygen atmosphere, considerably decreases the amount of organic matter and increases the final mass loss temperature.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Márcia Silva, Mary Alves, S. Lima, L. Soledade, Elaine Paris, E. Longo, A. Souza, and Iêda Santos

Abstract  

Sr(Ti,Nd)O3 was synthesized in order to evaluate the influence of the amount of neodymium on the thermal and structural properties of SrTiO3. The synthesis was carried out using the polymeric precursor method. A small mass gain was observed for the SrTiO3 and SrTi0.98Nd0.02O3 samples accompanied by an exothermic peak in the DTA curves. Other steps at higher temperatures are assigned to the combustion of the organic material and carbonate. Elimination of defects by previous calcination of the precursors is responsible by the short and long range ordering of the perovskite. Cubic phase was obtained for undoped and doped SrTiO3.

Restricted access

Abstract  

SnO2-based materials are used as sensors, catalysts and in electro–optical devices. This work aims to synthesize and characterize the SnO2/Sb2O3-based inorganic pigments, obtained by the polymeric precursor method, also known as Pechini method (based on the metallic citrate polymerization by means of ethylene glycol). The precursors were characterized by thermogravimetry (TG) and differential thermal analysis (DTA). After characterization, the precursors were heat-treated at different temperatures and characterized by X-ray diffraction. According to the TG/DTA curves basically two-step mass loss process was observed: the first one is related to the dehydration of the system; and the second one is representative to the combustion of the organic matter. Increase of the heat treatment temperature from 500 to 600C and 700C resulted higher crystallinity of the formed product.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: E. Araújo, Renata Barbosa, Crislene Morais, L. Soledade, A. Souza, and Moema Vieira

Abstract  

Nanocomposites containing both polyethylene and montmorillonite clay organically modified with four different types of quaternary ammonium salts were obtained via direct melt intercalation. Thus, the main purpose of this work was to evaluate the effect of the organoclay on the thermal stability of polyethylene. The organoclays were characterized by XRD, FTIR, DSC and TG. The polyethylene/organoclay nanocomposites were studied by XRD, TEM, TG, besides an evaluation of their mechanical properties. The results showed that the salts were incorporated by intercalation between the layers of the organoclay and, apparently that the nanocomposites were more thermally stable than pure polyethylene.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: R. Candeia, J. Freitas, M. Souza, Marta Conceição, Iêda Santos, L. Soledade, and A. Souza

Abstract  

The most feasible alternative among fuels derived from biomass seems to be the biodiesel, having the required characteristics for a total or partial substitution of diesel oil. Therefore, the aim of this work is to evaluate the thermal and rheological behavior of the blends of diesel with the methanol biodiesel obtained from soybean oil, using B5, B15 and B25 blends. All thermogravimetric curves exhibited one overlapping mass loss step in the 35–280C temperature range at air atmosphere and one step between 37–265C in nitrogen. The rheological study showed a Newtonian behavior (n=1) for all blends.

Restricted access

Abstract  

The conventional treatments of effluents containing heavy metals produce significant quantities of byproducts with recalcitrant characteristics, making necessary looking after alternative techniques in order to avoid the production of new contaminated residues. Sorption process of chromium and zinc in vertical columns loaded with sewage sludge and organic solid waste has been studied in this work. The data from the TG curves of the two sorbents presented significant differences when they were submitted to the metal uptake, being noticed the displacement of the thermal events towards lower temperatures for both types of sorbents studied. As it was expected, for both sorbents, an increase in the mass of samples has been observed at the completion of the thermal tests upon metal uptake. Therefore, these facts demonstrate that during the biosorption process a physico-chemical interaction took place between sorbents and metals, as it was evidenced by the more than 100 K increase in the decomposition temperatures as well as the variation of the ΔH values of the samples.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: F. Vieira, Soraia Souza, A. Oliveira, S. Lima, E. Longo, C. Paskocimas, L. Soledade, A. Souza, and Iêda Santos

Abstract  

In this study undoped and Cr, Sb or Mo doped TiO2 were synthesized by polymeric precursor method and characterized by X-ray diffraction, UV–VIS spectroscopy, infrared spectroscopy and thermogravimetry (TG). The TG curves showed a continuous mass loss assigned to the hydroxyl elimination and Cr6+ reduction. Doped TiO2 samples showed a higher mass loss assigned to water and gas elimination at lower temperatures. In these doped materials a decrease in the anatase–rutile phase transition temperature was observed. After calcination at 1,000 °C, rutile was obtained as a single phase material without the presence of Cr6+.

Restricted access