Search Results
Saccharomyces cerevisiae MERIT.ferm was used as mono- and mixed-cultures with Williopsis saturnus var. mrakii NCYC500 in mango wine fermentation. A ratio of 1:1000 (Saccharomyces:Williopsis) was chosen for mixed-culture fermentation to enable longer persistence of the latter. The monoculture of S. cerevisiae and mixed-culture was able to ferment to dryness with 7.0% and 7.7% ethanol, respectively. The monoculture of W. mrakii produced 1.45% ethanol. The mango wines fermented by S. cerevisiae alone and the mixed-culture were more yeasty and winey, which reflected their higher amounts of fusel alcohols, ethyl esters and medium-chain fatty acids. The mango wine fermented by W. mrakii alone was much less alcoholic, but fruitier, sweeter, which corresponded to its higher levels of acetate esters.
Optimization of extraction ratio (ER) of tree peony seed protein (TPSP) was investigated using response surface methodology (RSM). The second-degree equation for ER of TPSP had high coeffi cient (0.9625) of determination. The probability (P) value of regression model signifi cance was less than 0.001 by analysis of central composite rotatable design. Relationships of ER to pH, liquid/solid ratio, squares of all factors, and cross-product factors (x2x3, x2x4, x3x4) were signifi cant (P<0.05). Whereas, extraction time, temperature, and cross-product terms (x1x2, x1x3, x1x4) were not signifi cant factors (P>0.05). Optimum extraction conditions were 3.42 h, pH 9.50, 50.80 ºC, and 9.54 ml g–1 of liquid/solid ratio with the maximum ER (43.60%) . SDS-PAGE indicated TPSP had mainly four proteins (180, 100, 60, and 35 kDa) with four subunits of 60, 48, 38, and 23 kDa. TPSP had a good amino acid composition with abundant essential amino acids (39.76%) determined by amino acid analysis.
The objective of this work was to research the antibacterial effects of orange pigment, which was separated from Monascus pigments, against Staphylococcus aureus. The increase of the diameter of inhibition zone treated with orange pigment indicated that orange pigment had remarkable antibacterial activities against S. aureus. Orange pigment (10 mg ml−1) had a strong destructive effect on the membrane and structure of S. aureus by the analysis of scanning electron microscopy as well as transmission electron microscopy. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) further demonstrated that the cell membrane was seriously damaged by orange pigment, which resulted in the leakage of protein from S. aureus cells. A significant decrease in the synthesis of DNA was also seen in S. aureus cells exposed to 10 mg ml−1 orange pigment. All in all, orange pigment showed excellent antibacterial effects against S. aureus.
Analysis of the binding interaction of (−)-epigallocatechin-3-gallate (EGCG) and pepsin is important for understanding the inhibition of digestive enzymes by tea polyphenols. We studied the binding of EGCG to pepsin using fluorescence spectroscopy, Fourier transform infrared spectroscopy, isothermal titration calorimetry, and protein-ligand docking. We found that EGCG could inhibit pepsin activity. According to thermodynamic parameters, a negative ΔG indicated that the interaction between EGCG and pepsin was spontaneous, and the electrostatic force accompanied by hydrophobic binding forces may play major role in the binding. Data from multi-spectroscopy and docking studies suggest that EGCG could bind pepsin with a change in the native conformation of pepsin. Our results provide further understanding of the nature of the binding interactions between catechins and digestive enzymes.
Abstract
Conversion of economic microcrystalline cellulose (MCC) into high value-added prebiotic glucans, is not only stimulates utilisation of renewable lignocellulosic biomass, but also provides cheap prebiotics to reduce high incidence of obesity and metabolic syndrome. Herein, glucans (C0.25–C0.50–C1.00) from MCC were prepared by pre-impregnation with dilute sulphuric acid (0.25–0.50–1.00%) and ball-milling treatment for 1 h. NMR spectroscopy and gel-permeation chromatography of the glucan products showed a significant reduction in the degree of polymerisation (DP) and molecular weights (Mw). All prepared glucans improved gut stress evaluated by in vitro digestion and fermentation (young and aging mouse faecal inocula). C1.00 with lower DP and Mw showed better water solubility, earlier peak, and exhibited increased 1-diphenyl-2-picrylhydrazyl activity, higher ratios of Lactobacillus to Escherichia coli, and a higher level of short chain fatty acids better than C0.25 and C0.50 treatment (P < 0.05). Better prebiotic effects were observed in aging mice than in young mice. The highest ratio of Lactobacillus to E. coli was a 2.13-fold increase for aging mice compared to a 1.79-fold increase for young mice, relative to the initial value after C1.00 treatment. The study provides a novel pathway and a new resource for producing glucan.