Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: N. Tsenov x
  • Refine by Access: All Content x
Clear All Modify Search

Seventy-six promising bread winter wheat lines were investigated in relation to the allelic composition of grain storage proteins. The aim of the study was: i) to find out a possible relation between wheat quality and the separate low molecular loci and ii) to examine the potential of some of the existing Glu-A3 alleles to increase the quality. Five indices were investigated that covered almost all aspects of grain quality: sedimentation value, wet gluten content, dough stability, bread volume, quality index and valorimeter. The samples for quality analysis were from a 3-year period of investigation. Different statistical approaches were used to study the influence of Glu-A3 on the level of the indices. The LMW-GS were determined by SDS-PAGE (Payne et al. 1980). It was determined that locus Glu-A3 had the strongest influence on quality among the loci, that determine the low molecular glutenins. The Glu-A3 alleles influenced the end-use quality irrespective of the HMW-GS and LMW-GS composition background against which their effect was expressed. There were important variations among the separate alleles of Glu-A3 locus for their direct effect on end-used quality. Glu-A3 f had strong positive effect on the end-use quality against the background of all HMW combinations. Glu-A3 b had a similar positive effect. The Glu-A3 b allele was connected with high quality in wheat but its effect was weaker than that of Glu-A3 f and was not significant for some of the investigated indices.

Restricted access

Seventy-three common winter wheat varieties developed throughout the breeding history of the DAI were investigated for their diversity of allelic variants on storage proteins component composition in grain. The high- and low molecular weight protein structures were determined by the widely used SDS-PAGE method of Payne et al. (1980). The ratio between the individual alleles on the loci of high and low molecular weight glutenin was analyzed. The change in the HMW-score was followed according to the period when the respective varieties were developed. The configuration Glu-A1b , GluB1 c , Glu-D1d , which was established in about 45% of the investigated genotypes, was most frequent in the high-molecular variants of glutenin. Concerning the low-molecular weight glutenins in 21 out of the 73 investigated varieties, the combination Glu-A3c , Glu-B3b , Glu-D3c was observed; it coincided with the spectrum of the widely used variety Bezostaya 1. Highest diversity was established in the allelic variants of Glu-A3, Glu-B3 , in which 6 and 5 alleles, respectively, were observed. The quality of the varieties developed at DAI was relatively high (score 8.1). About a quarter of them are with high end-use quality confirmed in production. This is mainly due to the concentration of “strong” positive alleles in glutenin as a result from the intensive use of parents directly or indirectly related to Bezostaya 1, which lead to decrease of the percent of Glu-B1a (2 + 12). Quality should be further increased by additional diversity of combinations between “possitive” as effect on end-use grain quality alleles. Concerning HMW loci to keep of high grain end-use quality, it is necessary to maintain the status of Glu-A1b (2*), as well as of Glu-D1d (5 + 10).

Restricted access