Search Results

You are looking at 1 - 10 of 31 items for

  • Author or Editor: Q. Xu x
  • All content x
Clear All Modify Search

Summary  

Air samples were collected at a downtown site in Beijing from January to July 2004 and analyzed by instrumental neutron activation analysis (INAA) combined with organic solvent extraction method for the concentrations and distributions of extractable organohalogens (EOX), including extractable organochlorinated (EOCl), organobrominated (EOBr) and organoiodinated compounds (EOI). The concentrations of EOX were increasing in the order of EOCl >> EOBr ~ EOI in both gaseous and particulate phase. EOCl accounted for 75.8-100% and 83.7-100% of EOX in particulate and gaseous phase, respectively, suggesting that EOCl was the major component of the organohalogens in the atmosphere. In the plots of the logarithm of the EOX concentrations versus the reciprocal temperature, their linear relations were observed for EOCl (R = -0.9), for EOBr (R = -0.6) and EOI (R = -0.7) in gaseous phase, which indicated that the concentrations of EOCl, EOBr and EOI in gaseous phase exhibited a strong temperature dependence, i.e., their concentrations increased with increasing of temperature.

Restricted access

Abstract  

In our invention, FCC (fluid catalytic cracking) dry gas could be used to react with benzene without any special purification, and more than 90% ethylene was converted to ethylbenzene. The phenomenon of carbon deposition over catalyst surface was obvious and leads to a deactivation of catalyst, so it is important to study the behavior of carbon deposition of catalyst during alkylation of benzene. The influence of several factors such as temperature, reaction time, reactant concentration of the amount and the kinetics of carbon deposition were investigated, during which carbon depositing rate equations were obtained for different reactant.

Restricted access

Abstract  

The combustion behavior of Shuangya Mountain (SYM) coal dust has been investigated by means of TG in this paper. The reaction fraction can be obtained from isothermal TG data. The regressions of g(), an integral function of vs. t for different reaction mechanisms were performed. The mechanism of nucleation and nuclei growth is determined as the controlling step of the coal dust combustion reaction by the correlation coefficient of the regression, and the kinetic equation of the SYM coal dust combustion reaction has been established.

Restricted access

Abstract  

The synthesis of superheavy elements is now a hot topic in nuclear physics. Alpha-decay and spontaneous fission are two main decay modes in heavy and superheavy regions. Theoretical studies on alpha radioactivity and spontaneous fission can provide useful information for experiments. We investigate the alpha-decay and spontaneous fission of heavy and superheavy nuclei with different models. This includes the alpha-decay energies, alpha decay half-lives, and half-lives of spontaneous fission. The theoretical alpha-decay half-lives are in good agreement with experimental ones. The calculated half-lives of spontaneous fission are in reasonable agreement with present data. The properties of unknown nuclei are predicted.

Restricted access

Garlic is widely used as food flavouring, and China is the world's largest garlic producer and exporter. To develop a convenient technique for evaluation of garlic cultivars would be worthwhile, and it would have wide application in such a huge market. In this research, 3D front-face fluorescence data of 8 garlic cultivars were recorded, and independent component analysis was used to decompose the overall fluorescence spectra into six independent components. The first, second, and fourth independent components showed a big difference among the cultivars, and the chemical fluorophores behind these three components were specified as protein, vitamin B6, and ATP, respectively, as fluorescent markers for evaluation. The result showed that all 8 cultivars cluster separately. The cultivar “YNQJ” have the highest quality in terms of protein and vitamin B6, “NXYC” and “SDHB” have the highest content of ATP, while “SXXA” is the poorest in terms of protein and ATP, and “HNJZ” has the lowest content of vitamin B6. Therefore, rapid evaluation of garlic cultivars can be accomplished successfully by using only the proportion values of three properly selected fluorescent markers.

Restricted access

Members of WRKY gene family encode transcription factors involved in plant developmental processes and response to biotic and abiotic stresses. In order to understand the function of the TaWRKY71 gene, a homologue gene was isolated and characterised in wheat (Triticum aestivum L.) genotype TAM107. Tissue-specific gene expression profiles indicated that TaWRKY71 was constitutively expressed in roots, stems, leaves, stamen and pistil. The relative expression of TaWRKY71 was elucidated under ABA treatment and other abiotic stresses. In agreement with this, several putative cis-acting elements involved in ABA-response, drought-inducibility, low-temperature and heat response were detected in the promoter region of TaWRKY71. The function of TaWRKY71 was further determined by transforming Arabidopsis thaliana. Transgenic plants over-expressing TaWRKY71 displayed enhanced seed germination under ABA treatment and were tolerant to salt and drought stresses. These results indicate that TaWRKY71 gene might play important roles in seed germination and abiotic stress response.

Restricted access

Barley stripe mosaic virus (BSMV)-based virus induced gene silencing (VIGS) is an effective strategy for rapid determination of functional genes in wheat plants. ERECTA genes are reported to regulate stomatal pattern of plants, and manipulation of TaERECTA (a homologue of ERECTA in bread wheat) is a potential route for investigating stomatal development. Here, the leucine-rich repeat domains (LRRs) and transmembrane domains of TaERECTA were selected to gain BSMV:ER-LR and BSMV:ER-TM constructs, respectively, targeting TaERECTA for silencing in wheat cultivars ‘Bobwhite’ and ‘Cadenza’, to identify the function of TaERECTA on stomatal patterns. The results showed that reduced expression of TaERECTA caused an increased stomatal and epidermal cell density by average 13.5% and 3.3%, respectively, due to the significantly reduced size of leaf epidermal and stomatal cells, and this led to an increase in stomatal conductance. These suggest that modulation of TaERECTA offers further opportunities in stomatal engineering for the adaptation of photosynthesis in wheat.

Restricted access

Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici Eriks., is a major disease that causes substantial losses to wheat production worldwide. The utilization of effective resistance genes in wheat cultivars is the preferred control of the disease. To study the inheritance of all-stage resistance in spring wheat cultivars Louise, WA008016, Express, Solano, Alturas and Zak from the Pacific Northwest (PNW) of the United States, the six cultivars were crossed with the Chinese susceptible variety Taichung 29. Single-spore isolates of CYR32 and CYR33, the predominant Chinese races of P. striiformis f. sp. tritici, were used to evaluate F1, F2 and BC1 generations for stripe rust resistance under controlled greenhouse conditions. Genetic analysis determined that Louise had one dominant resistance gene to CYR32, temporarily designated as YrLou. WA008016 had two dominant and one recessive resistance genes to CYR32, temporarily designated as YrWA1, YrWA2 and YrWA3, respectively. Express had a single recessive gene that conferred resistance to CYR32, temporarily designated as YrExp3. The two independent dominant genes in Solano conferring resistance to CYR32 were temporarily designated as YrSol1 and YrSol2. Alturas had two recessive genes for resistance to CYR32, temporarily designated as YrAlt1 and YrAlt2. Zak has one dominant gene for resistance to CYR33, temporarily designated as YrZak1. These six cultivars can be important resistance sources in Chinese wheat stripe rust resistance breeding.

Restricted access

Abstract  

The molar heat capacities C p,m of 2,2-dimethyl-1,3-propanediol were measured in the temperature range from 78 to 410 K by means of a small sample automated adiabatic calorimeter. A solid-solid and a solid-liquid phase transitions were found at T-314.304 and 402.402 K, respectively, from the experimental C p-T curve. The molar enthalpies and entropies of these transitions were determined to be 14.78 kJ mol−1, 47.01 J K−1 mol for the solid-solid transition and 7.518 kJ mol−1, 18.68 J K−1 mol−1 for the solid-liquid transition, respectively. The dependence of heat capacity on the temperature was fitted to the following polynomial equations with least square method. In the temperature range of 80 to 310 K, C p,m/(J K−1 mol−1)=117.72+58.8022x+3.0964x 2+6.87363x 3−13.922x 4+9.8889x 5+16.195x 6; x=[(T/K)−195]/115. In the temperature range of 325 to 395 K, C p,m/(J K−1 mol−1)=290.74+22.767x−0.6247x 2−0.8716x 3−4.0159x 4−0.2878x 5+1.7244x 6; x=[(T/K)−360]/35. The thermodynamic functions H TH 298.15 and S TS 298.15, were derived from the heat capacity data in the temperature range of 80 to 410 K with an interval of 5 K. The thermostability of the compound was further tested by DSC and TG measurements. The results were in agreement with those obtained by adiabatic calorimetry.

Restricted access

Abstract  

Burning behavior of small-scale wood crib was studied by a serial of cone calorimeter tests. The heat release rate curves of these small wood cribs were different due to porosity factor and this shows that the control condition switches from one to another. The burning of some crib with small porosity factors was self-extinguished in fixed flow rate of air supply in cone calorimeter. These results were compared with Gross’s studies. The switch point of porosity-controlled and surface area controlled burning regime is different from Gross’s result.

Restricted access