Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Qinghe Yin x
  • Mathematics and Statistics x
Clear All Modify Search


The trigonometric polynomials of Fejér and Young are defined by

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$S_n (x) = \sum\nolimits_{k = 1}^n {\tfrac{{\sin (kx)}} {k}}$$ \end{document}
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$C_n (x) = 1 + \sum\nolimits_{k = 1}^n {\tfrac{{\cos (kx)}} {k}}$$ \end{document}
, respectively. We prove that the inequality
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\left( {{1 \mathord{\left/ {\vphantom {1 9}} \right. \kern-\nulldelimiterspace} 9}} \right)\sqrt {15} \leqslant {{C_n \left( x \right)} \mathord{\left/ {\vphantom {{C_n \left( x \right)} {S_n \left( x \right)}}} \right. \kern-\nulldelimiterspace} {S_n \left( x \right)}}$$ \end{document}
holds for all n ≥ 2 and x ∈ (0, π). The lower bound is sharp.

Restricted access