Search Results

You are looking at 1 - 10 of 10 items for :

  • Author or Editor: R. Hu x
  • Materials and Applied Sciences x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

After wheat, rye is the second most important raw material for bread and bakery products, and it is one of the most excellent sources of dietary fibres and bioactive compounds. Besides, rye is utilised in more and more other food products as well, such as breakfast cereals, porridges, pasta, snack products, etc. Interestingly, its production is decreasing worldwide, probably because of the expansion of other cereals (e.g. triticale), but also the effect of climate change can also play a role therein. However, there is no doubt that scientific research aimed at studying the possible health benefits and the potential of rye in the development of novel food products has intensified over the past decade.

The aim of our paper is to make a comprehensive review of the latest results on the compositional and technological properties of rye that fundamentally influence its utilisation for food purposes. Furthermore, this review aims to identify the current development directions and trends of rye products.

Open access

The turbulence intensity is an important feature of the turbulent airflow and draught sensation in ventilated rooms. The turbulence is often measured with hot-wire (in fluid mechanics applications) and hot-sphere sensors (in indoor air comfort investigations). In this paper the turbulence was measured with hot-wire and hot-sphere sensors in a full-scale single office room based on air speed measurements. Isothermal air injection was applied and the measurements were conducted on eight different inlet volume flow rates. The two applied sensors resulted two independent samples, which were evaluated with different statistical methods. The results showed that there was not significant difference between the standard deviation and average of the measured samples. Thus, the two sensors statistically gave the same results on probability level 95%.

The referred international standards suggest an average turbulence intensity 40% for draught comfort design in mixing ventilation. The results showed that most of the measured turbulence intensities were less than the recommended standard turbulence intensity.

Open access

Abstract

Thermodynamic efficiency is a crucial factor of a power cycle. Most of the studies indicated that efficiency increases with increasing heat source temperature, regardless of heat source type. Although this assumption generally is right, when the heat source temperature is close to the critical temperature, increasing the heat source temperature can decrease efficiency. Therefore, in some cases, the increase in the source temperature, like using improved or more collectors for a solar heat source can have a double negative effect by decreasing efficiency while increasing the installation costs. In this paper, a comparison of the CO2 subcritical cycle and the Trilateral Flash Cycle will be presented to show the potential negative effect of heat source temperature increase.

Open access
Acta Alimentaria
Authors:
N. Kellner
,
E. Antal
,
A. Szabó
, and
R. Matolcsi

Abstract

Guignardia bidwellii, indigenous to North America, is a significant pathogen of grapes long known in Hungary, infecting only the growing green parts of the vine (leaves, petioles, shoots, and bunches). In the absence of adequate plant protection and extreme weather conditions such as a predominantly humid, warm year, black rot of grapes can be expected. The pathogen can cause high yield losses due to grape rot and reduce wine quality if the infection is severe.

The evolution of certain biogenic amine compounds were investigated under the influence of grape black rot. The results obtained showed that they were present in low concentrations from an oenological point of view. Polyphenol composition was consistent with the literature, blackening affected mainly the concentration of catechin. Black rot fungus does not produce β-glucosidase enzyme. In terms of resveratrol content, black rot has no particular effect. However, like Botrytis cinerea, it produces glycerol and, proportionally, gluconic acid in lower concentrations.

It can be concluded that black rot of grapes does not cause health problems when introduced into wine processing.

Open access

Abstract

Carbon-dioxide-based trans-critical power cycle is a novel technology for waste heat recovery. This technology can handle the high-temperature exhaust gas and can be built in a compact size, which is an important feature for the auxiliary equipment for an internal combustion engine. To obtain the best output, four configurations were constructed: the basic system; one with preheater, another with regenerator and a fourth with preheater and regenerator. Special features of supercritical CO2 make these cycles able to recover more energy than the traditional organic Rankine cycle. According to this study, heat regeneration increases thermal efficiency while preheating influences the net power output. Thus, it is beneficial to add both regenerator and preheater to the basic cycle.

Open access
Acta Alimentaria
Authors:
B. Schmidt-Szantner
,
M. Gasztonyi
,
P. Milotay
, and
R. Tömösközi-Farkas

Abstract

A three-year (2016–2018) open field experiment was conducted to study the effect of irrigation, fertilisation, and seasonal variation on the main bioactive components, such as carotenoids (lycopene and β-carotene), total polyphenols, antioxidant capacity, and tocopherols of processed Uno Rosso F1 tomato. The statistical evaluation of measurements proved that the multi-year data set cannot be evaluated as combined data set; the values obtained in different years must be evaluated separately. The impact of irrigation on the content of bioactive components varied from year to year. The correlation was negative between irrigation and α-tocopherol content in 2016 and 2018 (r = –0.567 and –0.605, respectively), polyphenol content in 2016 (r = –0.668), γ-tocopherol content in 2017 (r = –0.662), while positive correlation was observed between concentration of vitamin C (r = 0.533) in 2017, lycopene content (r = 0.473) in 2018 and irrigation intensity. A weak correlation was proved between K levels and concentrations of lycopene and polyphenols in 2016 (r = 0.301 and r = 0.392, respectively).

Open access
Acta Alimentaria
Authors:
M.K.J. Szentmiklóssy
,
E. Jaksics
,
A. Farkas
,
É. Pusztai
,
S. Kemény
,
R. Németh
, and
S. Tömösközi

Abstract

Rye is an important raw material of bread due to tradition and its favourable nutritional and technological qualities. Despite the beneficial fibre composition, a special group of short-chain carbohydrates, the so called FODMAPs (fermentable oligo-, di-, monosaccharides and polyols) may cause problems for patients with irritable bowel syndrome. The aim of our work was to investigate the non-starch carbohydrate (dietary fibre compounds, short-chain carbohydrates) composition of rye varieties, and of their novel milling fractions obtained from industrial milling trials and test loaves made from them. Regarding fibre and short chain carbohydrate composition, rye varieties did not show significant differences. In new subfractions, fibre and FODMAP composition were described, among profiles most of them differ from commonly used flours, independently from variety. The yeast fermentation and baking caused a decrease in water-extractable arabinoxylan content, at the same time increased the substitution pattern of water-extractable arabinoxylans. Furthermore, breadmaking process decreased the fructan content, and therefore increased the fructose level, thus modifying the short-chain carbohydrate composition. Based on our knowledge, this research is among the first ones investigating the fibre and short-chain composition of rye from the seeds to the consumable final products.

Open access

Abstract

Human milk (HM) of healthy, well-nourished, lactating mothers is a unique and ideal source of nutritive factors, like hormones, cytokines, chemokines, growth factors that ensures the proper growth and development of infants. Among the main components of HM, fat is an important energy source and a regulatory factor. The quality of milk fat depends on its fatty acid (FA) composition. Gas chromatography coupled with flame ionisation detection is one of the most common methods for analysis of the FA profile of HM. The aim of this study was to evaluate the FA composition of HM, collected from mothers with different health conditions (normal Body Mass Index (nBMI); overweight and obese) using GC-FID method. The results showed that saturated FAs were present in the highest amount in the HM samples, of which palmitic acid was the main representative. The major monounsaturated FA was oleic acid, while linoleic acid was the most abundant of the polyunsaturated FAs (PUFA). Overweight and obese women have lower levels of PUFA in their breast milk. The data were subjected to principal component and quadratic discriminant analysis (QDA). QDA classified nBMI and overweight and obese mother milk samples with 88.24% accuracy. Significant differences were found between normal and overweight and obese HM samples in case of C10:0 and C18:3 FAs. Higher maternal BMI was associated with a higher n-6/n-3 PUFA ratio.

Open access
Progress in Agricultural Engineering Sciences
Authors:
K. Szalay
,
B. Keller
,
R. Rák
,
N. Péterfalvi
,
L. Kovács
,
J. Souček
,
F. Sillinger
, and
A. Jung

Abstract

One of the biggest challenges of raspberry production in Hungary nowadays is reducing the unfavorable effects of climate change. The maturation phase of main varieties within this region falls in a period of extremely high temperature and atmospheric drought detaining desirable fruit growth. Dedicated plant breeding alone is not enough. An immediate action is required. There has been a need for physical protection against excessive direct radiation. In order to restore, or even save the domestic raspberry production and market, introducing of greenhouse or polytunnel solutions are needed. Experimental plantations of three different raspberry varieties were set in two repetitions: covered and uncovered versions. Each cover has characteristic interaction with light which can generate different environmental conditions and also differences in plant growth and fruit quality. Besides the monitoring of elementary biological indicators, a wide range of sensors (temperature, humidity, solar irradiation) was used to identify differences and to find the optimal tunnel material for maximal plant productivity. Within the framework of the project we also tested a portable spectroradiometer and a snapshot imaging camera to study the practical value of proximal sensing in water- and photosynthetic light use efficiency and vitality mapping.

Open access
Acta Alimentaria
Authors:
E. Horvath-Szanics
,
J. Perjéssy
,
A. Klupács
,
K. Takács
,
A. Nagy
,
E. Koppány-Szabó
,
F. Hegyi
,
E. Németh-Szerdahelyi
,
M.Y. Du
,
Z.R. Wang
,
J.Q. Kan
, and
Zs. Zalán

The increasing consumer demand for less processed and more natural food products – while improving those products’ quality, safety, and shelf-life – has raised the necessity of chemical preservative replacement. Biopreservation refers to extended storage life and enhanced safety of foods using the natural microflora and (or) their antibacterial products. Chitinolytic enzymes are of biotechnological interest, since their substrate, chitin, is a major structural component of the cell wall of fungi, which are the main cause of the spoilage of food and raw plant material. Among the several organisms, many bacteria produce chitinolytic enzymes, however, this behaviour is not general. The chitinase activity of the lactic acid bacteria is scarcely known and studied.

The aim of the present study was to select Lactobacillus strains that have genes encoding chitinase, furthermore, to detect expressed enzymes and to characterise their chitinase activity. Taking into consideration the importance of chitin-bindig proteins (CBPs) in the chitinase activity, CBPs were also examined. Five Lactobacillus strains out of 43 strains from 12 different species were selected by their chitinase coding gene. The presence of the chitinase and chitin-biding protein production were confirmed, however, no chitinolytic activity has been identified.

Open access