Search Results

You are looking at 1 - 10 of 16 items for

  • Author or Editor: S. Chang x
  • All content x
Clear All Modify Search

Abstract

The primary aim of this study was to investigate the influence of emotional expression and dynamic information on attractiveness judgements of male and female targets. 56 undergraduate participants were presented with video and static stimuli in smiling and neutral conditions (40 targets, 160 stimuli). Our results indicate that smiling and movement influence attractiveness judgements differentially for male and female targets. Smiling increases the attractiveness ratings of female, but not male targets, whereas movement increases the attractiveness ratings of male, but not female targets. Secondly, and perhaps most importantly, our findings demonstrate that the evaluative standards used by raters differ across presentation conditions. Although ratings of women's faces are positively related across movement and expression conditions, attractiveness ratings of smiling and neutral men's faces are correlated within movement conditions, but not across them. These findings highlight the importance of studying faces in motion to determine the factors influencing interpersonal attraction, and caution against the overgeneralization of results from research using static faces.

Restricted access

Abstract  

The purpose of this paper is to study necessary and sufficient conditions for the Ishikawa iterative sequence with mixed errors of asymptotically quasi-nonexpansive type mappings in Banach spaces to converge to a fixed point in Banach spaces. The results presented in this paper complememt, improve and prefect the corresponding results of [1]–[4] and [7]–[9].

Restricted access

Summary  

Some stability and convergence theorems of the modified Ishikawa iterative sequences with errors for asymptotically nonexpansive mapping in the intermediate sense and asymptotically pseudo contractive and uniformly Lipschitzian mappings in Banach spaces are obtained.

Restricted access

Abstract  

The thermochemical decomposition of agricultural by-product corn cob impregnated with ZnCl2, as a precursor material for producing the activated carbons, was investigated by thermogravimetric (TG) analysis at the heating rate of 5 and 10°C min–1 under a controlled atmosphere of nitrogen (60 ml min–1). The appearance of a peak in the differential thermogravimetric plot (DTG) in the temperature range of 400–600°C is significantly related to the extent of impregnation. The DTG curve of the sample impregnated with the optimal impregnation ratio of 175% (i.e., the ratio of ZnCl2 mass of 87.5 g in the 200 cm3 of water to corn cobmass of 50 g), which yields an optimal BET surface area of the activated carbon and displays a DTG peak at about 500°C. This may be partially due to the intense chemical activation and results in the formation of a porous structure in the activated solid residue. This observation is also in close agreement with previous results at optimal pyrolysis temperatures of 500°C and with similar experimental conditions. In order to support the results in the TG-DTG analysis, the development of pore structure of the resulting activated carbons thus obtained by previous studies was also examined and explained using the scanning electron microscopy (SEM).

Restricted access

The thermal properties of chelates of croconic acid and squaric acid with divalent copper, cobalt, nickel and zinc have been investigated by TG and DTA. The decreasing order of thermal stability for the decomposition of the croconate chelates was Ni > > Zn > Co=Cu and for the squarate complexes, Zn > Co=Cu > Ni. The copper croconate TG showed water loss in two distinct steps. This was rationalized on the basis of the already known Jahn-Teller effect for this molecule. The nickel squarate was thought to have a different structure than the other squarate chelates. Activation energies were calculated for the croconate chelates from their DTA curves.

Restricted access

Abstract  

Flammable chemicals are frequently encountered in industrial processes. Under the safe operation basis and for fire/explosion danger prevention, it is imperative to recognize the flammability characteristics of these processes, especially under the working scenarios for elevated pressure and temperature. This study was conducted to investigate fire and explosion properties, including the explosion limits (LEL and UEL), maximum explosion overpressure (P max), maximum rate of explosion pressure rise (dP/dt)max, gas or vapor deflagration index (K g) and explosion class (St) of various acetone/water solutions (100, 75, 50 and 25 vol.%) at higher initial pressure/temperature up to 2 atm and 200°C via a 20-L-Apparatus. We further discussed the safety-related parameters and fire/explosion damage degree variations in the above aqueous acetone within 1 atm and 150°C. The results offered a successful solution for evaluating the flammability hazard effect in such a relevant crucial process with elevated pressure and temperature.

Restricted access

Thermal degradation of poly(vinyl butyral) (PVB) and its mixtures with alumina, mullite and silica was investigated by non-isothermal thermogravimetry in the temperature range of 323 to 1273 K. The analysis of the data was carried out using a three-dimensional diffusion model. Results showed that the kinetic parameters (activation energy and pre-exponential factor) of the PVB degradation are different for polymer alone, and ceramic/polymer composites. The overall weighted mean apparent activation energy showed an increasing reactivity in the order of PVB<alumina+PVB<mullite+PVB<silica+PVB. This shows that the acidic and basic surface characteristics of the ceramics promote the thermal degradation of PVB and, the more acidic silica affects the degradation more than mullite and alumina. The effect of pellet compression pressure in the range of 4000 to 8000 psig is also investigated.

Restricted access

Abstract  

Preventing accidental explosions of flammable liquid/gas mixtures is very important. As far as flammability characteristics are concerned, we simulated the effects of inert liquid/gas, which was filled with reactors, vessels, or closed space, employed in the chemical process industries. The inert liquid/gas (H2O) weakened the oxygen concentration and reduced solvent vapor concentration in a 20-L-Apparatus. This study investigated the flammability characteristics of acetone/water solutions (100/0, 75/25, 50/50, and 25/75 vol.%) that are controlled at a temperature of 150°C and pressures of 101/202 kPa, respectively. The flammability parameters included flammability limits (LEL and UEL), maximum explosion pressure (P max), maximum explosion pressure rise ((dP dt −1)max), and vapor deflagration index (K g). The results of a series of experimental tests showed that UEL, P max, and K g all decreased with steam rising under the experimental conditions. The results can be applied to process safety design/operation for identifying whether the inert liquid/gas (H2O) content has any substantial effects in reducing the fire and explosion hazard of the solution of interest.

Restricted access

Abstract  

This work is the first evaluation of environmental gamma exposure rates by the Nuclear Medicine Department at Lin Shin Hospital (LSH) in Taichung with Thermoluminescent dosimeter (TLD-100H) during the Fukushima Nuclear Power Plant (FNPP) accident. After the 9.0 MW strong earthquake hit northern Japan on March 11, 2011, a TLD-100H was used to monitor environmental kerma rate at Taichung (2,500 km away from northern Japan) from Mar-08 to Apr-09, 2011 and evaluated kerma rate due to global fallout of the sever FNPP accidents. Exposure rates varied widely among positions close to the PET/CT facility. Observed kerma rates of up to 4.12 ± 0.62 mSv mo−1 indicated an explicit, heavy leakage of photon through the PET/CT facility. No significant contributions were detected at Taichung, Taiwan. Hence, the health effect cause by the “extra radiation” from FNPP accidents is negligible. As this was a rare case of environmental monitoring during a nuclear power plant accident, its findings are of considerable significance.

Restricted access

Abstract  

239+240Pu concentrations and 240Pu/239Pu atom ratios in bottom sediments of the Yellow Sea, Korea Strait, East Sea (Sea of Japan), Sea of Okhotsk, and Northwest Pacific Ocean were determined. In coastal sediments near the Korean Peninsula, 239+240Pu concentrations varied from 0.02 to 1.72 Bq.kg-1, and their 240Pu/239Pu atom ratios from 0.15 to 0.24, with an average of 0.20±0.03. 240Pu/239Pu atom ratios of bottom sediments in the deep NW Pacific Ocean and its marginal seas (East, Okhotsk seas) were in the range of 0.15-0.23. A little elevated 240Pu/239Pu atom ratios in the bottom layer sediment may be due to Pu released into the environment during the pre-moratorium period, having high 240Pu/239Pu atom ratios and low 238Pu/239+240Pu activity ratios.

Restricted access