Search Results

You are looking at 1 - 10 of 33 items for :

  • Author or Editor: T. Kiss x
  • Biology and Life Sciences x
  • All content x
Clear All Modify Search

Voltage-dependent sodium channels have a decisive role in the generation of action potentials (AP) in many types of cells. In addition to the fast inactivating Na-current, associated with AP generation, the Na-channel can give rise to a noninactivating or persistent Na-current. The latter current generally comprises up to 5% of the transient current having important physiological consequences. It was established that persistent Na-currents have functional significance in setting the membrane potential in a subthreshold range regulating by this way dendritic depolarisations, repetitive firing and enhancing synaptic transmission. Voltage dependent sodium channel genes have been identified in a variety of invertebrates, as well as mammalian and nonmammalian vertebrates. It has been established that the biophysical properties, pharmacology and gene organization of invertebrate sodium channels are largely similar to the vertebrate ones, supporting the view that the ancestral sodium channel was established before the evolutionary separation of the invertebrates from the vertebrates. Although different isoforms of voltage sensitive Na-channels have now been identified the mechanism for persistent current remains controversial. An important yet unanswered question is whether persistent and fast inactivating Na-currents arise from different sets of sodium channels or whether the persistent Na-current results from different gating of the same channel type. The aim of the present review is to discuss the origin and the function of the persistent current, focusing on data derived from an invertebrate animal.

Restricted access

The mature mRNA always carries nucleotide sequences that faithfully mirror the protein product according to the rules of the genetic code. However, in the chromosome, the nucleotide sequence that represents a certain protein is interrupted by additional sequences. Therefore, most eukaryotic genes are longer than their final mRNA products. The human genome project revealed that only a tiny portion of sequences serves as protein-coding region and almost one quarter of the genome is occupied by non-coding intervening sequences. The elimination of these non-coding regions from the precursor RNA in a process termed splicing must be extremely precise, because even a single nucleotide mistake may cause a fatal error. At present, two types of intervening sequences have been identified in protein-coding genes. One of them, the U2-dependent or major-class is prevalent and represents 99% of known sequences. The other one, the so-called U12-dependent or minor-class of introns, occurs in much lesser amounts in the genome. The basic problem of nuclear splicing concerns i/ the molecular mechanisms, which ensure that the coding regions are correctly recognized and spliced together; ii/ the principles and mechanisms that guarantee the high fidelity of the splicing system; iii/ the differences in the excision mechanisms of the two classes of introns. We are going to present models explaining how intervening sequences are accurately removed and the coding regions correctly juxtaposed. The two splicing mechanisms will also be compared.

Restricted access
Acta Botanica Hungarica
Authors: K. T. Kiss, Zs Trábert, and M. Duleba
Restricted access
Restricted access

Functional morphology of Helix pomatia salivary gland cells was studied at light microscopic level by using different histochemical methods. Three cell types could be demonstrated in the salivary gland: mucocytes, granular and vacuolated cells. The distribution and the number of the different cell types were different in active and inactive snails. In active feeding animals, dilatated interlobular salivary ducts were observed, which were never present in inactive ones. In active animals an additional cell type, the cystic cell could also be observed. Periodic acid Schiff staining revealed both mucuos and serous elements in the salivary gland. Furthermore, hematoxyline-eosin staining indicated the occurrence of a cell layer with high mitotic activity in the acini. Applying immunohistochemical methods with monoclonal mouse anti-human Ki-67 clone, B56 and polyclonal rabbit anti-human Ki-67 antibodies, we also were able to demonstrate the occurrence of dividing cells in the salivary gland. Analysis of 1-2 µm semi-thin Araldite sections stained with toluidine-blue showed that the saliva can be released, in addition to possible exocytosis, by the lysis of cystic cells. Using an apoptosis kit, we could also establish that this process was due to rather an apoptotic than a necrotic mechanism. In the salivary gland of active snails, where an intensive salivation takes place, significantly more apoptotic cells occurred, if compared to that of inactive animals. It is suggested that programmed cell death may also be involved in the saliva release.

Restricted access

The ultrastructure, neuroanatomy and central projection patterns, including the intercellular connections of the statocyst hair cells of the pond snail, Lymnaea stagnalis, were studied, applying different intra- and extracellular cellular staining techniques combined with correlative light- and electron microscopy. Based on the ultrastructure different hair cells could be distinguished according to their vesicle and granule content, meanwhile the general organization of the sensory neurons was rather uniform, showing clearly separated perinuclear and “vesicular” cytoplasmic regions. Following intra- and extracellular labeling with fluorescence dyes or HRP a typical, local arborization of the hair cells was demonstrated in the cerebral ganglion neuropil, indicating a limited input-output system connected to the process of gravireception. Correlative light- and electron microscopy of HRP-labeled hair cells revealed both axo-somatic and axo-axonic output contacts of hair cell varicosities, and input on sensory axons located far from the terminal arborizations. Our findings suggest (i) a versatile ultrastructural background of hair cells corresponding possibly to processing different gravireceptive information, and (ii) the synaptic (or non-synaptic) influence of gravireception at different anatomical (terminal, axonal and cell body) levels when processed centrally. The results may also serve as a functional morphological background for previously obtained physiological and behavioral observations.

Restricted access
Restricted access