Search Results

You are looking at 1 - 10 of 43 items for :

  • Author or Editor: Y. Li x
  • Biology and Life Sciences x
  • All content x
Clear All Modify Search

The Taihang Mountain Range is located at E112°50′–114°30′, N35°20′–39°30′ in North China. This study aimed to reveal relationships between plant communities, soil variables and topographic variables. Floristic data and environmental data from sixty-eight quadrats of 10 m × 20 m along an elevation gradient from 1050 to 2180 m were analysed by TWINSPAN, DCA and CCA. Eight vegetation formations were recognized, all secondary successional stages following the original broad-leaved deciduous forests’ distraction by human activities. The results showed that the community patterns are related to both soil variables and topographic variables. Among the soil variables, soil N, P, K and organic matter were found to be the most important factors forcing the spatial patterns of plant communities. The vegetation patterns were also significantly correlated with the topographic variables, elevation, slope and aspect. Interactions between the environmental variables were significant. It is concluded that further measures for the conservation of vegetation and protection of soils in the Taihang Mountains must be undertaken.

Restricted access

This work describes the induction, purification and partial biochemical characterizations of an antimicrobial protein from the housefly larvae induced by ultrasonic wave. It has been purified to apparent homogeneity by ammonium sulfate precipitation followed by Sephadex G-75, Bio-gel P6 gel filtration, and CM-Sepharose Fast Flow cation exchange chromatography. The protein is a cationic protein with an apparent molecular weight of 16315 Da determined by no-denaturing electrophoresis and SDS-PAGE, respectively. Biochemical profile assays show that this protein has good thermal stability, and repeatedly frozen and defrosted durability. The optimum pH for antimicrobial activity is around pH5. The antimicrobial range of the protein includes Gram-positive, Gram-negative bacteria and some fungi. Results of the membrane permeability assays suggest that the probable mode of action of this protein is membrane-disrupting mechanism.

Restricted access

A detail study of distribution, host range, and seasonal pattern of western flower thrips (WFT), Frankliniella occidentalis (Pergande), in Yunnan Province was conducted in 2004–2006. The pest is distributed throughout the province and was found in 22 out of 25 widely spaced locations surveyed. WFT was found feeding on 45 species of vegetables, ornamentals, and weeds in the province. Seasonal pattern of WFT on vegetables planted in open field and inside greenhouses was similar and, with exception of minor local differences, did not differ from information generated elsewhere. These findings may provide some useful data for the management of this and possibly other thrips pests in Yunnan.

Restricted access

Chitosan was obtained from cuticles of the housefly (Musca domestica) larvae. Antibacterial activities of different Mw chitosans were examined against six bacteria. Antibacterial mechanisms of chitosan were investigated by measuring permeability of bacterial cell membranes and observing integrity of bacterial cells. Results show that the antibacterial activity of chitosan decreased with increase in Mw. Chitosan showed higher antibacterial activity at low pH. Ca 2+ and Mg 2+ could markedly reduce the antibacterial activity of chitosan. The minimum inhibitory concentrations of chitosans ranged from 0.03% ∼ 0.25% and varied with the type of bacteria and Mw of chitosan. Chitosan could cause leakage of cell contents of the bacteria and disrupt the cell wall.

Restricted access

New technologies in gene transfer combined with experimental embryology make the chicken embryo an excellent model system for gene function studies. The techniques of in ovo electroporation, in vitro culture for ex ovo electroporation and retrovirus-mediated gene transfer have already been fully developed in chicken. Yet to our knowledge, there are no definite descriptions on the features and application scopes of these techniques. The survival rates of different in vitro culture methods were compared and the EGFP expression areas of different gene transfer techniques were explored. It was that the optimal timings of removing embryo for EC culture and Petri dish system was at E1.5 and E2.5, respectively; and optimal timing of injecting retrovirus is at E0. Results indicated that the EC culture, in ovo electroporation, the Petri dish system and retrovirus-mediated method are, respectively, suitable for the very early, early, late and whole embryonic stages in chicken. Comparison of different gene transfer methods and establishment of optimal timings are expected to provide a better choice of the efficient method for a particular experiment.

Restricted access

Doublesex and mab-3-related transcription factor 1 (Dmrt1) is a Z-linked gene that putatively determines the phenotype of gonads in birds. The sex differential expression of Dmrt1 was examined using wholemount in situ hybridization (WISH) in the urogenital systems during embryogenesis. The results revealed that Dmrt1 showed dimorphic expression in chicken gonads, which increased from day 6.5 to day 10.5. The expression of Dmrt1 in male (ZZ) gonads was not twice as much as in female (ZW) gonads, suggesting the existence of other regulatory mechanisms in addition to Z chromosome dosage effect.

Restricted access

To study the development of starch granules in polyploid wheats, we investigated the expression of starch synthetic genes between the synthetic hexaploid wheat SHW-L1, its parents T. turgidum AS2255 and diploid Ae. tauschii AS60. The synthetic hexaploid wheat SHW-L1 showed significantly higher starch content and grain weight than its parents. Scanning electron microscopy (SEM) showed that SHW-L1 rapidly developed starch granules than AS2255 and AS60. The amount of B-type granule in AS60 was less than that in SHW-L1 and AS2255. RT-qPCR result showed that the starch synthetic genes AGPLSU1, AGPLSU2, AGPSSU1, AGPSSU2, GBSSI, SSIII, PHO1 and PHO2 expressed at earlier stages with larger quantity in SHW-L1 than in its parents during wheat grain development. The expression of the above mentioned genes in AS60 was slower than in SHW-L1 and AS2255. The expression pattern of starch synthase genes was also associated with the grain weight and starch content in all three genotypes. The results suggested that the synthetic hexaploid wheat inherited the pattern of starch granule development and starch synthase gene expression from tetraploid parent. The results suggest that tetraploid wheat could plays more important role for starch quality improvement in hexaploid wheat.

Restricted access

Different components of biodiversity may vary differently since species diversity was considered to be determined by resource availability but functional diversity was related to partitioning of niche space. Moreover, the harsh or benign conditions may result in different niche space partitioning by the coexisting species. For example, in harsh environments niche differentiation may be stronger resulting in higher functional diversity. In this study, we investigate species diversity and functional diversity along a south-to north-facing slope gradient with different resource availability in a sub-alpine meadow. Our results indicate that the patterns of species diversity and functional diversity are not consistent along this gradient. Both species richness and Shannon index of diversity increased, but functional diversity slightly decreased or changed a little from south-to north-facing slope. Moreover, these two components formed a quadratic relationship. Soil water content (SWC) was the limiting resource along this gradient. On one hand, it determined the species diversity; on the other hand, it also influenced functional diversity via affecting niche differentiation and species trait pool. In conclusion, functional diversity was determined by both species richness and niche differentiation with the influence of soil water content.

Restricted access
Cereal Research Communications
Authors: X. Zhang, Y. Chen, Y. Wei, W. Lu, H. Liao, Y. Liu, X. Yang, X. Li, L. Yang, L. Li, and R. Li

Partial abortion of gametes possessing S-5 j in S-5 i / S-5 j genotype at locus S-5 is responsible for hybrid sterility between indica and japonica subspecies in rice ( Oryza sativa L.), while a single wide compatibility (WC) allele S-5 n can restore normal hybrid fertility between the two groups. In this study, Pei’ai 64S, one of the most popular WC line widely used for subspecific hybrid rice breeding program in South China was studied for location of its S-5 locus. Twenty SSR (Simple Sequence Repeat) markers derived from Cornell SSR linkage map and 9 developed using sequences from GenBank database were employed to perform bulked segregant analysis of the mapping population derived from a three-way cross (Pei’ai 64S/T8//Akihikari) to tag fine location of the hybrid sterility locus, S-5 . This S-5 locus was mapped on chromosome 6 approximately 0.2 cM from GXR6 and RM276 SSR markers. This tight linkage of the markers and the S-5 locus would be very useful for efficient marker-assisted selection for WC varieties and for map-based cloning of the gene.

Restricted access

High ozone (O3) can cause great damage to plants. However, the effect of high O3 on nitrogen (N) absorption, distribution, and utilization in rice at different growth stages under different planting densities is poorly understood. In the present study, a conventional cultivar (Yangdao 6) and a hybrid cultivar (II You 084) with different planting densities were exposed to an elevated amount of O3 (E-O3; 50% higher than that of the control, C-O3) under a freeair gas concentration enrichment (FACE) system. N absorption, distribution, and utilization of the green leaves, stems, and shoots at tillering, jointing heading, and maturity were investigated. Results showed that E-O3 significantly increased the N content in the shoots of Yangdao 6 by 7.5%, 12.7%, and 19.6%, respectively, at jointing, heading, and maturity. Also, the N content in the shoots of II You 084 increased by 5.4%, 6.5%, and 8.4% at the corresponding growth stage upon E-O3 application. E-O3 significantly decreased N accumulation of II You 084 by 8.3%, 4.9%, 4.7%, and 19.2%, respectively, at tillering, jointing, heading, and maturity. Further, E-O3 had a decreasing effect on the N distribution in green leaves (p ≤ 0.05) of both cultivars, but exerted an increasing effect on that in the stems of both cultivars (p ≤ 0.05). In addition, E-O3 significantly decreased the N use efficiency (NUE) for biomass of the two cultivars in all growth stages. These results revealed that E-O3 could increase the N content in rice plants but decrease the N accumulation and utilization in both cultivars. The effects of E-O3 on N absorption, distribution, and utilization were not affected by planting density.

Restricted access