Search Results

You are looking at 1 - 10 of 11 items for :

  • Author or Editor: Y. Peng x
  • Chemistry and Chemical Engineering x
Clear All Modify Search

Summary

The analysis of cantharidin, a potent antitumor yet highly toxic chemical, is reported in this article. In regions including the United States, Europe, and China, cantharidin is either a banned ingredient or being highly regulated in cosmetic products. In this article, a gas chromatographic-tandem mass spectrometric (GC-MS/MS) method has been established for the determination of cantharidin in cosmetic products. Cosmetic samples were divided into two groups according to whether they contained aqueous ethanol or not. Samples containing aqueous ethanol in the formulation were dried under an air flow prior to extraction by methanol. The multiple reaction monitoring (MRM) mode with the parent ion at m/z 128 and the product ions at m/z 55 and 85 was employed. The linear range covered from 0.1 to 30.00 μg mL−1 (R = 0.9996) for cantharidin. The detection limit (LOD) was 0.3 μg kg−1. The intraday and between-day relative standard deviations (RSDs) were <8.7%. The mean recoveries were within the range 101.5–110.5%. The developed GC-MS/MS method was applied on 12 commercial cosmetic product samples, and is shown to be simple and sensitive and can be used for the qualitative and quantitative analysis of cantharidin in cosmetic products.

Restricted access

Summary

In the present paper, a simple and reliable high-performance liquid chromatography-diode array detection (HPLC-DAD) method was developed both for quantitative determination and fingerprint analysis of Agrimonia pilosa Ledeb for quality control. Under the optimized HPLC conditions, seven bioactive compounds including rutin, quercetin-3-rhamnoside, luteoloside, tiliroside, apigenin, kaempferol, and agrimonolide were determined simultaneously. For fingerprint analysis, 11 common peaks were selected as the characteristic peaks to evaluate the similarities of 16 different samples collected from different origins in China. Besides, hierarchical cluster analysis (HCA) was also performed to evaluate the variation of the raw materials. This is the first report of using a simple method for quality control of A. pilosa Ledeb through multi-component determination and chromatographic fingerprint analysis to the best of our knowledge.

Restricted access
Authors: T. Nozaki, Y. Itoh, Z. Peng, N. Nakanishi, A. Goto, Y. Ito and H. Yoshida

Abstract  

Fluorine-18 produced by the18O(p,n)18F reaction on18O-water has proved to be highly useful as a source for a slow positron beam. About 70 GBq of18F is produced routinely by an ultra-compact cyclotron. The18F formed in H2 18O target is sent through a fine pipe to the site of positron slowing-down, fixed on a small spot by adsorption or drying, and then placed close to the moderator foil. An automatic apparatus has been set up for the entire process including the recovery of H2 18O.

Restricted access

Abstract  

The power-time curves of Tetrahymena thermophila exposed to tributyltin (TBT) were detected by microcalorimetry. Metabolic rate (r) decreased significantly while peak time (PT) increased with the enhancement of TBT level. Compared with the measured multibiomarker including catalase, lactate dehydrogenase, glutathione S-transferase, ATPase and membrane fluidity, PT and r could be sensitive biomarkers for assessing TBT toxicity at cellular level. The effective concentrations obtained by them were consistent to those obtained by the protozoan community toxicity test. As a result, the microcalorimetric assay of T. thermophila had a great potential in assessing TBT acute toxicity and monitoring TBT pollution in the freshwater ecosystem.

Restricted access

Summary

A new high-performance liquid chromatography (HPLC) method has been developed and validated for determination of enantiomeric purity of thiazolidine-2-carboxylic acid within a short run time of less than 10 min. The method was based on pre-column derivatization of thiazolidine-2-carboxylic acid with aniline, and complete separation of enantiomers has been achieved on a Chiralcel OD-H analytical column (250 × 4.6 mm) using n-hexane-isopropanol (85:15 v/v) as mobile phase at a flow rate of 1.0 mL min−1 under UV and optical rotation (OR) detection. Detection wavelength was set at 254 nm. Then the effects of mobile phase and temperature on enantioselectivity were further evaluated. The method was validated with respect to precision, accuracy, linearity, limit of detection (LOD), limit of quantification (LOQ), and robustness. The recoveries were between 98.5 and 101.3% with percentage relative standard deviation less than 1.16%. The LOD and LOQ for the aniline derivatives of (+)-thiazolidine-2-carboxylic acid were 4.9 and 16.4 μg mL−1 and for the aniline derivatives (−)-thiazolidine-2-carboxylic acid were 5.1 and 17.2 μg mL−1, respectively.

Restricted access

Abstract  

Cumene hydroperoxide (CHP) and its derivatives have caused many serious explosions and fires in Taiwan as a consequence of thermal instability, chemical contamination, and even mechanical shock. It has been employed in polymerization for producing phenol and dicumyl peroxide (DCPO). Differential scanning calorimetry (DSC) was used to analyze the thermal hazard of CHP in the presence of sodium hydroxide (NaOH), sulfuric acid (H2SO4), and sodium bisulfite (Na2SO3). Thermokinetic parameters for decomposition, such as exothermic onset temperature (T 0), maximum temperature (T max), and enthalpy (ΔH), were obtained from the thermal curves. Isothermal microcalorimetry (thermal activity monitor, TAM) was employed to investigate the thermal hazards during CHP storage and CHP mixed with NaOH, H2SO4, and Na2SO3 under isothermal conditions in a reactor or container. Tests by TAM indicated that from 70 to 90 °C an autocatalytic reaction was apparent in the thermal curves. According to the results from the TAM test, high performance liquid chromatography (HPLC) was, in turn, adopted to analyze the result of concentration versus time. By the Arrhenius equation, the activation energy (E a) and rate constant (k) were calculated. Depending on the process conditions, NaOH was one of the incompatible chemicals or catalysts for CHP. When CHP is mixed with NaOH, the T 0 is induced earlier and the reactions become more complex than for pure CHP, and the E a is lower than for pure CHP.

Restricted access

Abstract  

Over 90% of the cumene hydroperoxide (CHP) produced in the world is applied in the production of phenol and acetone. The additional applications were used as a catalyst, a curing agent, and as an initiator for polymerization. Many previous studies from open literature have verified and employed various aspects of the thermal decomposition and thermokinetics of CHP reactions. An isothermal microcalorimeter (thermal activity monitor III, TAM III), and a thermal dynamic calorimetry (differential scanning calorimetry, DSC) were used to resolve the exothermic behaviors, such as exothermic onset temperature (T 0), heat power, heat of decomposition (ΔH d), self-heating rate, peak temperature of reaction system, time to maximum rate (TMR), etc. Furthermore, Fourier transform infrared (FT-IR) spectrometry was used to analyze the CHP products with its derivatives at 150 °C. This study will assess and validate the thermal hazards of CHP and incompatible reactions of CHP mixed with its derivatives, such as acetonphenone (AP), and dimethylphenyl carbinol (DMPC), that are essential to process safety design.

Restricted access

Abstract

The decomposition process of barium, cerium and neodymium oxalates in air was investigated by DTA-TG. Decomposition of an oxalate coprecipitate precursor and formation of barium cerate were examined in air, N2 and CO2 atmospheres, respectively, by employing DTA-TG and XRD. The results showed that, in air, cerium oxalate could easily be decomposed to CeO2 below 350°C and Nd2O3 could be obtained at 670°C, while a high temperature of >1400°C was needed to obtain BaO. Although some amount of BaCeO3 was formed at 500°C in air, at 650°C in N2 and at 800°C in CO2, single perovskite phase of BaCeO3 could only be obtained at a much higher temperature.

Restricted access

Summary  

Accelerator mass spectrometry (AMS) is an ultra-sensitive method to monitor and trace the environmental exposure levels of 14C-labeled molecules in vivo. Nicotine [3-(1-methyl-2-pyrrolidinyl)-pyridine], a major alkaloid in tobacco products, has proven to be a potential genotoxic compound. Using 14C-labeled nicotine and AMS, we have investigated the inhibitory effect of curcumin, garlic squeeze, grapeseed extract, tea polyphenols, vitamin C and vitamin E, respectively, on nicotine-hemoglobin (Hb) adduction in vivo. The results demonstrated that these dietary constituents induced remarkable decrease of nicotine-Hb adducts. The inhibitory fact may afford an important clue of the chemoprevention of the potential nicotine-induced carcinogenesis.

Restricted access