Search Results

You are looking at 1 - 9 of 9 items for :

  • Author or Editor: Z. Varga x
  • Chemistry and Chemical Engineering x
Clear All Modify Search

Abstract  

A rapid and simple sample preparation method for plutonium determination in environmental samples by inductively coupled plasma sector field mass spectrometry (ICP-SFMS) and alpha-spectrometry is described. The developed procedure involves a selective CaF2 co-precipitation for preconcentration followed by extraction chromatographic separation. The proposed method effectively eliminates the possible interferences in mass spectrometric analysis and also removes interfering radionuclides that may disturb alpha-spectrometric measurement. For 239Pu, 240Pu and 241Pu limits of detection of 9.0 fg·g−1 (0.021 mBq), 1.7 fg·g−1 (0.014 mBq) and 3.1 fg·g−1 (11.9 mBq) were achieved by ICP-SFMS, respectively, and 0.02 mBq by alpha-spectrometry. Results of certified reference materials agreed well with the recommended values.

Restricted access

Summary  

During the period of 1993-2001 chemical decontaminations of 24 SGs in the units 1-3 of the Paks NPP were carried out by a non-regenerative version of AP-CITROX technology, even in two or three consecutive cycles. A comprehensive investigation of the above decontamination method have revealed that the fundamental issues of analytical chemistry and corrosion science were not taken into consideration during the elaboration of AP-CITROX procedure. Therefore, the non-regenerative version of the technology utilized at Paks NPP can be considered to be not an adequate method for the chemical decontamination of any reactor equipments having large steel surfaces (e.g., SGs). As a consequence of the lack of the appropriate decontamination method, initiation of a R&D project focused on the elaboration of the required technology should not be postponed. In this paper, we present a brief overview on the fundamental issues of the technology development. Selected findings obtained in our laboratory on the field of the improvement of the AP-CITROX technology are also reviewed in order to demonstrate the crucial role of some selection criteria.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: K. Varga, Z. Németh, J. Somlai, I. Varga, R. Szánthó, J. Borszéki, P. Halmos, J. Schunk and P. Tilky

Abstract  

During the optimization of the AP-CITROX decontamination technology the effect of the different flow rates of the decontamination solutions on the radioactive contamination and corrosion state of stainless steel tube samples originating from steam generators of Paks NPP were studied by a pilot-plant circulation system. The results have proved that a significant increase (up to 2.89 m/s) in the flow rate of the decontamination solution in the 1-5 steps is highly recommended and in order to improve the passivity of the surfaces it should be kept as low as possible (0.5 m/s) during the passivation.

Restricted access

Abstract  

57Fe-conversion electron Mössbauer spectroscopy (CEMS) — a sensitive tool to analyze the phase composition of corrosion products on the surface of stainless steel — was applied to study real specimens from the Paks Nuclear Power Plant, Hungary. The primary circuit side of the heat exchanger tubes was studied on selected samples cut out from the steam generators during regular maintenance. Mostly Cr-and Ni-substituted magnetite, amorphous Fe-oxides/oxyhydroxides as well as the signal of bulk austenitic steel of the tubes were detected. The level of Cr-and Ni-substitution in the magnetite phase could be estimated from the Mössbauer spectra. It is suggested that Cr-Ni substitution occurs simultaneously so that the inverse spinel structure of magnetite is preserved up to a certain limit which appears to be roughly at [Fe3+]tet[Fe2+ 1/4Ni2+ 3/4Fe3+ 1/4Cr3+ 3/4]octO4. Further decrease of the iron content of this phase results in the formation of nickel chromite of regular spinel structure, with very low Fe content. This transformation may be responsible for the hybrid structure of the protective oxide layer, being substantially accelerated by previously performed, factory developed and proposed AP-CITROX decontamination cycles.

Restricted access

Abstract  

A real specimen originating from the primary circuit of a VVER-440 type pressurized water cooled nuclear reactor has been studied by Conversion Electron Mössbauer Spectroscopy (CEMS) in order to find out how the AP-CITROX decontamination procedure modifies the structure and composition of the surface oxide layer of stainless steel which is used in the steam generator. Other methods like voltammetry, gravimetry, and SEM-EDAX were also applied to characterize the samples and to help the interpretation of CEMS results. It was found that, in contradiction with expectations, the presence of the surface magnetite layer could not be convincingly identified even on the non-decontaminated sample. This finding together with the relatively weak Mössbauer signals indicated that the surface oxide layer is strongly Fe-depleted. It was also concluded that the upper layer of the bulk steel (under the oxide layer) has an altered composition probably due to irradiation-enhanced diffusion of the metallic constituents. It was established that the AP-CITROX decontamination procedure does not exert detrimental effects on the thickness and composition of the surface oxide layer.

Restricted access

Abstract  

The surface contamination by uranium and transuranium (Pu, Am, Cm) nuclides in the primary circuit of pressurized water nuclear reactors is a fairly complex problem as (i) different chemical forms (molecular, colloidal and/or disperse) of these atoms can be present in the boric acid coolant, and (ii) only limited information about the extent, kinetics and mechanism of uranium and transuranium (TRU) accumulation on constructional materials is available in the literature. A comprehensive program has been initiated in order to study the accumulation of uranium and TRU species on some structural materials used at Soviet made VVER-type pressurized water reactors (such as heat exchanger tube of steam generators and stainless steel canister material). This paper, which is the first part of a series of two, provides a comprehensive view on the main experimental parameters influencing the extent and character of the surface contamination by uranium and TRU nuclides. Specifically, we give a brief summary of relevant literature data on the chemistry of uranium and TRU elements and review the dominant chemical forms and their relative sorbability on austenitic stainless steel and Zr(Nb) alloy surfaces. Moreover, some findings on the distribution of uranium, plutonium, americium, and curium species in a model solution of boric acid coolant obtained by the VisualMINTEQ computer code are also presented and discussed.

Restricted access

Abstract  

Within the frame of a joint project, the accumulation of the uranium and transuranium (TRU) species on some structural materials used at Soviet made VVER-type pressurized water reactors (such as heat exchanger tube of steam generators and stainless steel canister material) has been studied. The experiments were carried out in a laboratory model system. During the sorption studies, boric acid coolants provided by the Paks Nuclear Power Plant (Paks NPP) were circulated for a period of 30 h. Solution and tube samples obtained in the course of above experiments were analyzed by independent methods (α- and γ-spectrometry, ICP-MS, SEM-EDX, voltammetry and XPS). The experimental results reveal that: (i) the surface excess of the TRU nuclides studied is extremely low (less than 1% of a monolayer coverage); (ii) the surface excess of uranium species measured on the SG tube surfaces is significantly higher, after 30 h sorption period (Γsample = 1.0 μg cm−2 U ≅ 3.7 × 10−9 mol cm−2 UO2) exceeds a monolayer coverage; (iii) the mechanistic features of the contamination processes (specific or non-specific adsorption, deposition of colloidal and/or disperse particles) depend decisively upon the nature of the studied radionuclides and the chemical structure and composition of the oxide layer formed on stainless steel surfaces.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: M. Pham, M. Betti, P. Povinec, M. Benmansour, V. Bünger, J. Drefvelin, C. Engeler, J. Flemal, C. Gascó, J. Guillevic, R. Gurriaran, M. Groening, J. Happel, J. Herrmann, S. Klemola, M. Kloster, G. Kanisch, K. Leonard, S. Long, S. Nielsen, J.-S. Oh, P. Rieth, I. Östergren, H. Pettersson, N. Pinhao, L. Pujol, K. Sato, J. Schikowski, Z. Varga, V. Vartti and J. Zheng

Abstract  

A new certified reference material (CRM) for radionuclides in sea water from the Irish sea (IAEA-443) is described and the results of the certification process are presented. Ten radionuclides (3H, 40K, 90Sr, 137Cs, 234U, 235U, 238U, 238Pu, 239+240Pu and 241Am) have been certified, and information values on massic activities with 95% confidence intervals are given for four radionuclides (230Th, 232Th, 239Pu and 240Pu). Results for less frequently reported radionuclides (99Tc, 228Th, 237Np and 241Pu) are also reported. The CRM can be used for quality assurance/quality control of the analysis of radionuclides in water samples, for the development and validation of analytical methods and for training purposes. The material is available in 5 L units from IAEA (http://nucleus.iaea.org/rpst/index.htm).

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: M. Pham, M. Betti, P. Povinec, M. Benmansour, R. Bojanowski, P. Bouisset, E. Calvo, G. Ham, E. Holm, M. Hult, C. Ilchmann, M. Kloster, G. Kanisch, M. Köhler, J. La Rosa, F. Legarda, M. Llauradó, A. Nourredine, J.-S. Oh, M. Pellicciari, U. Rieth, A. Rodriguez y Baena, J. Sanchez-Cabeza, H. Satake, J. Schikowski, M. Takeishi, H. Thébault and Z. Varga

Abstract  

A new Reference Material (RM) for radionuclides in mussel (Mytilus galloprovincialis) from the Mediterranean Sea (IAEA-437) is described and the results of the certification process are presented. Four radionuclides (40K, 234U, 238U, and 239+240Pu) have been certified, and information values on massic activities with 95% confidence intervals are given for nine radionuclides (137Cs, 210Pb(210Po), 226Ra, 228Ra, 228Th, 230Th, 232Th, 235U, and 241Am). Results for less frequently reported radionuclides (90Sr, 129I, 238Pu, 239Pu, and 240Pu) are also reported. The RM can be used for quality assurance/quality control of the analysis of radionuclides in mussel samples, for the development and validation of analytical methods and for training purposes. The material is available in 200 g units.

Restricted access