Search Results

You are looking at 1 - 10 of 20 items for

  • Author or Editor: Z. Xiao x
  • All content x
Clear All Modify Search

Abstract  

The contents of eight rare earth elements (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu) in various plant species taken from a rare earth ore area were determined by instrumental neutron activation analysis. For a given plant, the REE patterns in root, leaf and host soil are different from each other. The REE distribution characteristics in roots of various species are very similar and resemble those in the surface water. The results of this study suggest that there is no significant fractionation between the REEs during their uptake by the plant roots from soil solution. However, the variation of the relative abundance of individual REE occurs in the process of transportation and deposition of REEs in plants.

Restricted access

Abstract  

The principle for the electro-generative simultaneous leaching (EGSL) is applied to simultaneous leaching of pyrite-MnO2 in this paper. A galvanic system for the bio-electro-generative simultaneous leaching (BEGSL) has been set up. The equation of electric quantity vs. time is used to study the effect of produced sulfur on electro-generative efficiency and quantity. It has been shown that the resistance decreased in the presence of Acidithiobacillus thiooxidans (A. thiooxidans) with the increase of electro-generative efficiency. The effects of temperature and grain size on rate of ferrous extraction from pyrite under the conditions of presence and absence of A. thiooxidans were studied, respectively. The changes in the extraction rate of Fe2+ as particle size in presence of A. thiooxidans were more evident than that in the absence, which indicated that the extraction in bio-electro-generative leaching was affected by particle size remarkably. Around the optimum culture temperature for A. thiooxidans, the bigger change in the conversion rate of Fe2+ was depending on temperature. The transferred charge in BEGSL including part of S0 to sulfate group in the presence of (A. thiooxidans) which is called as biologic electric quantity, and the ratio of biologic electric quantity reached to 58.10% in 72 h among the all-transferred charge.

Restricted access

Abstract  

Chemical behavior of lanthanum in root tips excized from wheat seedlings growing at both promotional and inhibitory levels of LaCl3 in culture solutions was investigated by a sequential leaching procedure combined with instrumental neutron activation analysis. The results indicate that most of La exists in non-exchangeable species and the binding of La3+ to the root tips is extremely stable. The root tips during growing at the inhibitory level of LaCl3 absorb much more La than those at the promotional level. However, the La proportion in each fraction is similar for both groups.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Z. Xiao, D. Liu, C. Wang, Z. Cao, X. Zhan, Z. Yin, Q. Chen, H. Liu, F. Xu, and L. Sun

Abstract  

The effect of mechanical alloying on Zn-Sb alloy system is investigated with X-ray diffraction (XRD), laser grain size analysis and differential scanning calorimetry (DSC) respectively. The results of laser particle size analysis shows that the particle size decreases with increasing of the grinding time between 0 and 24 h. XRD and DSC results indicate that longer the grinding time of Zn-Sb is, the more content of Zn4Sb3 become in the product in this process.

Restricted access

Abstract  

Radiolabeled somatostatin analogue is a useful ligand for scintigraphic imaging of somatostatin receptor-bearing tumors. In this study, we investigated the effects of different radiolabeling conditions on labeling yield and ratio between mono-iodinated and di-iodinated125I-Tyr3-octreotide by HPLC analysis. In vitro and in vivo stabilities of125I-Tyr3-octreotide and111In-DTPA-D-Phe1-octreotide were also determined. Both radiolabeled compounds were relatively stable in vitro, but were decomposed to free125I− and111In-DTPA in vivo, respectively.

Restricted access

Abstract  

A dual cell system was used to study the electrogenerative leaching sphalerite-MnO2 under the conditions of presence and absence of Acidithiobacillus ferrooxidans (A. ferrooxidans). The polarization of anode and cathode, and the relationship between the electric quantity (Q) and some factors, such as the dissolved Zn2+, Fe2+, the time in the bio-electro-generating simultaneous leaching (BEGSL) and electro-generating simultaneous leaching (EGSL), were studied. The results show that the dissolved Zn2+ in the presence of A. ferrooxidans is nearly 60% higher than that in the absence of A. ferrooxidans; the electrogenerative quantity in the former is about 134% more than that in the latter. A three-electrode system was applied to study anodic and cathodic self-corrosion current, which was inappreciable compared with the galvanic current between sphalerite and MnO2. The accumulated sulfur on the surface of sulfides produced in the electrogenerative leaching process could be oxidized in the presence of A. ferrooxidans, and the ratio of biological electric quantity reached to 31.72% in 72 h.

Restricted access

Plant-plant interaction plays a key role in regulating the composition and structure of communities and ecosystems. Studies of plant-plant interactions in forest ecosystems have mainly concentrated on growth effects of neighboring plants on target trees. Physiological effects of neighboring plants on target trees, in particular understorey effects on physiology of overstorey trees, have received less attention. It is still unclear what is the physiological mechanisms underlying positive growth effects of understorey removal, although understorey removal has been applied to improve the wood production for hundreds of years worldwide. Only 17.5% of published works dealt with understorey-overstorey interactions and only a few of those researched the understorey effects on the physiology of overstorey trees. Case studies indicated that overstorey Abies faxoniana trees grown with different understorey shrubs showed significantly different levels of tissue nitrogen and mobile carbohydrates. Removal experiment showed that nitrogen and mobile carbohydrates concentrations in Cunninghamia lanceolata trees grown in the absence of understorey shrubs differed significantly (pure stand > mixture) with those in trees grown in the presence of understorey shrubs, in particular during the dry season. This review highlighted that the neighboring woody plants affect Cand N-physiology in overstorey trees. These effects may be mainly resulted from underground competition for soil water rather than for other resources as the effects were more pronounced during the dry season. The present review suggests that positive effects of neighboring removal (e.g., understorey removal, thinning) on overstorey trees can be expected more rapidly and strongly in stressful area (e.g., low rainfall, nutrient-poor site) than in areas with optimal growth conditions. Hence, ecophysiology-based management strategies for dealing with neighboring plants in forest ecosystems should take into account: 1) site conditions, 2) timing, duration and frequency of management practices, and 3) species-specific properties and other aspects such as biodiversity conservation and soil erosion.

Restricted access

Abstract  

99Tc is an important radionuclides related to repository safety assessment. The mobility pertechnetate (TcO4 ) can be reduced to immobility technetium(IV) hydrous oxides (TcO2·nH2O) by Fe(II)-bearing minerals. In China, Gaomiaozi (GMZ) bentonite is regarded as the favorable candidate backfilling material for the HLW repository, which is contained some FeO. The diffusion behavior of 99Tc was investigated in GMZ bentonite by through- and out-diffusion methods. The effective diffusion coefficient (D e), the accessible porosity (εacc), apparent diffusion coefficient (D a) and distribution coefficient (K d) were decreased with the increasing of dry density. The D e values were (2.8 ± 0.2) × 10−11 m2/s and (3.5 ± 0.2) × 10−12 m2/s at dry density of 1,600 and 1,800 kg/m3, respectively. It was indicated that the dominating species was TcO4 during the diffusion processing. While, out-diffusion results showed that part of TcO4 may be reduced by Fe(II). The relationship of D e and εacc could be described by Archie’s law with exponent n = 2.4 for 99Tc diffusion in GMZ bentonite. Furthermore, the relationship between D a and dry density (ρ) was exponential.

Restricted access

The purpose of this study was to determine whether tissue oxygen indices (TOIs) in two muscle groups oscillated and were synchronized in repetition of impulse exercise with high intensity. Five impulse exercises of 400 watts for 10 s were repeated with intervals of 6 min. During this period, TOI was determined by near-infrared spectroscopy in the vastus lateralis and gastrocnemius muscles. TOIs in the two muscles oscillated at rest. The TOIs rapidly decreased during each impulse exercise and then recovered and overshot after each impulse. The TOIs oscillated during each interval period. During this test period, coherent and phase differences were determined. There was high coherence between TOIs in the two muscles with a peak value at 0.019 Hz. There was a phase difference of −45 ± 32.4 degrees between TOIs in the two muscles. This phase difference corresponded to about 6 s in time scale. It seemed from this time delay that impulse exercise was not a trigger factor for the starting point of TOIs in the two muscles. It has been concluded that TOIs oscillate and are synchronized between two muscles in repetition of impulse exercise with high intensity.

Restricted access
Acta Physiologica Hungarica
Authors: T Yano, R Afroundeh, K Shirakawa, C-S Lian, K Shibata, Z Xiao, and T Yunoki

The purpose of the present study was to examine how oscillation of tissue oxygen index (TOI) in non-exercising exercise is affected during high-intensity and low-intensity exercises. Three exercises were performed with exercise intensities of 30% and 70% peak oxygen uptake (Vo2peak) for 12 min and with exercise intensity of 70% Vo2peak for 30 s. TOI in non-exercising muscle (biceps brachii) during the exercises for 12 min was determined by nearinfrared spectroscopy. TOI in the non-exercising muscle during the exercises was analyzed by fast Fourier transform (FFT) to obtain power spectra density (PSD). The frequency at which maximal PSD appeared (Fmax) during the exercise with 70% Vo2peak for 12 min (0.00477 ± 0.00172 Hz) was significantly lower than that during the exercise with 30% Vo2peak for 12 min (0.00781 ± 0.00338 Hz). There were significant differences in blood pH and blood lactate between the exercise with 70% Vo2peak and the exercise with 30% Vo2peak. It is concluded that TOI in nonexercising muscle oscillates during low-intensity exercise as well as during high-intensity exercise and that the difference in Fmax between the two exercises is associated with the difference in increase in blood lactate derived from the exercise.

Restricted access