Search Results

You are looking at 1 - 10 of 18 items for :

  • Author or Editor: Z. Yang x
  • Biology and Life Sciences x
  • Refine by Access: All Content x
Clear All Modify Search

A synthetic autopolyploid was developed from diploid Aegilops tauschii, D genome progenitor of common wheat (Triticum aestivum). The tetraploid Ae. tauschii displayed a markedly larger organ size than the diploid donor. Fluorescence in situ hybridization (FISH) and DNA marker analysis revealed that there is no clear variation at either the chromosomal or DNA level between the diploid and tetraploid plants. We analyzed the variation in cytosine methylation patterns between the diploid and tetraploid plants by methylation-sensitive amplified polymorphism (MSAP) and detected 228 and 232 methylated sites in diploid and tetraploid plants, respectively. Statistical comparison indicated that the tetraploid Ae. tauschii genotype displayed no significant difference in polymorphic methylation level compared to the diploid ones. Twenty-two different genomic fragments displaying different methylation behavior during the ploidy conversions were isolated and sequenced. It demonstrated that alterations in the level of methylation have the most profound effects on coding genes. We demonstrated that there are some genes expressions modified by DNA methylation may be correlated with phenotypic alteration after autotetraploidization.

Restricted access

In this study, the peach kernel proteins were extracted and treated with alkaline proteinase to generate peach kernel protein hydrolysate (PKH), which showed angiotensin converting enzyme (ACE) inhibition activity. The hydrolysate was separated into four fractions and their anti-ACE activities were investigated. Our results showed that all PKHs had anti-ACE activity, and the lowest molecular weight fraction PKH4 had the highest ACE inhibitory activity. Lineweaver–Burk plots illustrated that the inhibition types of PKH3 and PKH4 were non-competitive. The Ki of PKH4 was lower than Ki of PKH3; suggesting PKH4 had high affinity to ACE. Amino acid composition analysis showed that the best anti-ACE peptide PKH4 possessed high levels of hydrophobic amino acids, branched-chain amino acids, and aromatic amino acids. In summary, our findings demonstrated that high anti-ACE activity is negatively related to the size of the PKHs and possibly the composition of amino acids, and the PKH4 was the best ACE inhibitor. Further, peach kernel peptides can be developed as a functional food for patients with hypertension.

Restricted access

Wheat-rye 1BL.1RS translocations have been widely used in wheat breeding programs. A 1BL.1RS translocation wheat line, 91S-23, was developed from a 1R monosomic addition of the rye (Secale cereale) inbred line L155 into wheat (Triticum aestivum) MY11. A new commercial wheat cultivar, CN18, which also contained the 1BL.1RS translocation, was derived from the cross MY11 × 91S-23. Polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH) indicated that the rye centromere was eliminated from the 1BL.1RS chromosomes of CN18 but not from 91S-23. Based on the 1RS source and the centromeric structure of the translocation chromosome, CN18 qualifies as a new wheat cultivar possessing a 1BL.1RS translocation. CN18 displayed high yield performance and resistance to powdery mildew and stripe rust, whereas 91S-23 was susceptible to these diseases. The present study provides a new 1RS resource for wheat improvement.

Restricted access

This research was aimed to study the cell wall degradation and the dynamic changes of Ca2+ and related enzymes in developing aerenchyma of wheat root under waterlogging. An examination of morphological development by light and electron microscope revealed that the structure of cell wall in middle cortical cells remained intact after 12 h of waterlogging and turned thinner after waterlogging for 24 h. At 48 h, the aerenchyma has been formed. The cellulase activity gradually increased in middle cortical cells within 24 h of waterlogging, and decreased with the formation of aerenchyma. Fluorescence detection and subcellular localization of Ca2+ showed the dynamic changing of Ca2+ at the cellular and subcellular levels during the development of aerenchyma. The activity of Ca2+-ATPase enhanced markedly in intercellular space, plasma membrane and tonoplast of some middle cortical cells after 8 h of waterlogging and remained high after 24 h, but it decreased after 48 h of waterlogging. All these suggests that cellulase, Ca2+ and Ca2+-ATPase show a dynamic distribution during the aerenchyma development which associated with the cell wall degradation of middle cortical cells. Moreover, there is a feedback regulation between Ca2+ and Ca2+-ATPase.

Restricted access

Stripe rust, caused by Puccinia striiformis f. sp. tritici, was one of the most disaster foliar diseases for wheat-growing areas of the world. Thinopyrum intermedium has provided novel resistance genes to multi-fungal disease, and new wheat-Th. intermedium derivatives for stripe rust resistance still need to develop for wheat breeding. Wheat line X484-3 was selected from a cross between wheat line MY11 and wheat-Th. intermedium ssp. trichophorum partial amphiploid TE-1508, and was characterized by genomic in situ hybridization (GISH) and functional molecular markers. Chromosome counting revealed that the X484-3 was 2n = 44 and GISH analysis using Pseudoroegneria spicata genomic DNAas a probe demonstrated that X484-3 contained a pair of St-chromosomes from Th. intermedium donor parents. The functional molecular markers confirmed that introduced St-chromosomes belonging to linkage group 7, indicating that line X484-3 was a 7St addition line. The resistance observation displayed that the introduced Th. intermedium ssp. trichophorum derived chromosomes 7St were responsible for the stripe rust resistances at adult plant. The identified wheat-Th. intermedium chromosome 7St addition line X484-3 can be used as a donor in wheat breeding for stripe rust resistance.

Restricted access

Wheat yellow rust resistance gene Yr17 was originated from the wheat-Aegilops ventricosa introgression, and still effective on the adult plant in Southern China. The previous studies located the gene Yr17 on the translocation of 2NS-2AS using the molecular and cytological markers. In the present study, we screened new PCR-based markers to map the gene Yr17 region from the investigation of a segregating 120 F2 population. All markers including four EST-PCR markers, a SCAR (sequence characterized amplified region) and a PLUG (PCR based landmark unique gene) marker specific to Yr17 gene were mapped on the chromosome 2AS, and located on the chromosomal deletion bin 2AS5-0.8–1.00 region. Based on the wheat-rice collinearity, we found that the sequences of the Yr17 gene linked markers were comparatively matched at rice chromosome 4 and chromosome 7. However, the identified closely linked genomic sequence of Yr17 gene is most likely collinear with genomic region of rice chromosome 4. The newly produced PCR based markers closely linked to Yr17 gene will be useful for the marker-assisted selection in wheat breeding for rust resistance.

Restricted access

Genotypes with various Vp-1B alleles perform different levels of pre-harvest sprouting (PHS) tolerance. In this study, 217 white-grained wheat cultivars, including 75 landraces, 39 historical cultivars, and 103 modern cultivars from five major regions of China, were examined to characterize the diversity of the Viviparous-1B ( Vp-1B ) locus associated with PHS tolerance. Four Vp-1B alleles were identified, three ( Vp-1Ba , Vp-1Bb and Vp-1Bc ) of which were previously reported in Chinese wheat cultivars. A new allele, Vp-1Be , was identified in the PHS tolerant landrace Hongheshangtou. Sequence analysis showed that Vp-1Be had an insertion of a 4-bp fragment, two SNPs, and a deletion of an 83-bp fragment compared with the nucleotide sequence of Vp-1Ba (AJ400713), all located in the third intron. Vp-1Be shared 97.80% similarity with the nucleotide sequence of AJ400713. The frequencies of Vp-1Ba , Vp-1Bb , and Vp-1Bc were 36.0%, 5.3%, and 57.3% in landraces; 23.1%, 7.7%, and 69.2% in historical cultivars; and 52.4%, 0%, and 47.6% in current cultivars, respectively.

Restricted access

Knowledge of the chromosomal distribution of long terminal repeats (LTR) is important for understanding plant chromosome structure, genomic organization and evolution, as well as providing chromosomal landmarks that are useful for chromosome engineering. The aim of this study is to investigate the genomic distribution of Sabrina -like LTR pDbH12, which was first isolated from Dasypyrum breviaristatum (V b genome), on Triticeae species in relation to the genomic evolution and chromosome identification. Fluorescence in situ hybridization (FISH) analysis showed that pDbH12 is present on Dasypyrum (V genome) and Hordeum (H genome) species with the hybridized signals covering the entire chromosomes. However, clone pDbH12 did not hybridize to the genomes of Secale, Triticum, Lophopyrum, Pseduoroengeria, Aegilops, Agropyron desertorum and Elymus. Thinopyrum intermedium displayed fourteen chromosomes that hybridized with pDbH12. Sequential FISH identified these chromosomes as belonging to the J s genome. Results from sequence characterized amplified region (SCAR) marker and dot blot both support the FISH results, and the integrative results suggest that amplification of Sabrina -like LTR retrotransposons is an important factor which involved in the speciation process. Clone pDbH12 could serve as a cytogenetic marker for tracing chromatin from V or V b , H and J s genomes in wheat-alien introgression lines.

Restricted access

Rye (Secale cereale) plays an important role in wheat improvement. Here we report a new triticale, named Fenzhi-1, derived from the wide cross MY11 (Triticum aestivum) × Jingzhou (Secale cereale) after the in vitro rye pollen has been irradiated by He-Ne laser. Morphologically, Fenzhi-1 is characterized by branched-spikes. Genetically, Fenzhi-1 displays stable fertility and immunity to wheat powdery mildew and stripe rust. In situ hybridization (FISH) and seed storage protein electrophoresis revealed that Fenzhi-1 is a new primary hexaploid triticale (AABBRR). The present study not only provides a new method to synthesize an artificial species, but also shows that Fenzhi-1 could be a valuable source for wheat improvement.

Restricted access

Doublesex and mab-3-related transcription factor 1 (Dmrt1) is a Z-linked gene that putatively determines the phenotype of gonads in birds. The sex differential expression of Dmrt1 was examined using wholemount in situ hybridization (WISH) in the urogenital systems during embryogenesis. The results revealed that Dmrt1 showed dimorphic expression in chicken gonads, which increased from day 6.5 to day 10.5. The expression of Dmrt1 in male (ZZ) gonads was not twice as much as in female (ZW) gonads, suggesting the existence of other regulatory mechanisms in addition to Z chromosome dosage effect.

Restricted access