Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Ádám Boncz x
  • Refine by Access: All Content x
Clear All Modify Search

Előrejelzés a kommunikációban – Áttekintés

Prediction in communication – A review

Magyar Pszichológiai Szemle
Authors:
Luca Béres
,
Ádám Boncz
, and
István Winkler

A szemtől szembeni kommunikáció mindennapi életünk meghatározó része, mégis keveset tudunk a sikeres kommunikációt lehetővé tevő kognitív és idegi folyamatokról. Az egyik folyamat, amely több megközelítés szerint is fontos a kommunikáció sikerességének szempontjából, a kommunikációs partner viselkedésének előrejelzése (predikciója). Jelen tanulmányban áttekintjük az előrejelzés és a kommunikáció kapcsolatának főbb modelljeit, különös tekintettel a szimulációs-prediktív megközelítésre, valamint a beszédfordulók időbeli koordinációjának kérdésére. Az empirikus bizonyítékok áttekintése alapján amellett érvelünk, hogy bár az előrejelző folyamatok teszik lehetővé a gyors beszélőváltásokat szemtől szembeni helyzetekben, nem tisztázott, hogy az előrejelzés közvetlen hatással bír-e a kommunikáció kimenetére.

Open access
Scientia et Securitas
Authors:
Brigitta Tóth
,
Ádám Boncz
,
Bálint File
,
István Winkler
, and
Márk Molnár

Összefoglalás. A hálózatkutatás idegtudományi alkalmazása áttörő eredményt hozott a humán kogníció és a neurális rendszerek közötti kapcsolat megértésében. Jelen tanulmány célja a neurális hálózatok néhány kutatási területét mutatja be a laborunkban végzett vizsgálatok eredményein keresztül. Bemutatjuk az agyi aktivitás mérésének és az agyi területek közötti kommunikációs hálózatok modellezésének technikáját. Majd kiemelünk két kutatási terület: 1) az agyi hálózatok életkori változásainak vizsgálatát, ami választ ad arra, hogy hogyan öregszik az emberi agy; 2) az emberi agyak közötti hálózat modelljének vizsgálatát, amely a hatékony emberi kommunikáció idegrendszeri mechanizmusait próbálja feltárni. Tárgyaljuk a humán kommunikációra képes mesterséges intelligencia fejlesztésének lehetőségét is. Végül kitérünk az agyi hálózatok kutatásának biztonságpolitikai vonatkozásaira.

Summary. The human brain consists of 100 billion neurons connected by about 100 trillion synapses, which are hierarchically organized in different scales in anatomical space and time. Thus, it sounds reasonable to assume that the brain is the most complex network known to man. Network science applications in neuroscience are aimed to understand how human feeling, thought and behavior could emerge from this biological system of the brain. The present review focuses on the recent results and the future of network neuroscience. The following topics will be discussed:

Modeling the network of communication among brain areas. Neural activity can be recorded with high temporal precision using electroencephalography (EEG). Communication strength between brain regions then might be estimated by calculating mathematical synchronization indices between source localized EEG time series. Finally, graph theoretical models can describe the relationship between system elements (i.e. efficiency of communication or centrality of an element).

How does the brain age? While for a newborn the high plasticity of the brain provides the foundation of cognitive development, cognition declines with advanced age due to so far largely unknown neural mechanisms. In one of our studies, we demonstrated that there is a correlation between the anatomical development of the brain (at prenatal age) and its network topology. Specifically, the more developed the baby’s brain, the more functionally specialized/modular it was. In another study we found that in older adults, when compared to young adults, connectivity within modules of their brain network is decreased, with an associated decline in their short-term memory capacity. Moreover, Mild Cognitive Impairment patients (early stage of Alzheimer) were characterized with a significantly lower level of connectivity between their brain modules than the healthy elderly.

Human communication via shared network of brain activity. In another study we recorded the brain activity of a speaker and multiple listeners. We investigated the brain network similarity across listeners and between the speaker and listeners. We found that brain activity was significantly correlated among listeners, providing evidence for the fact that the same content is processed via similar neural computations within different brains. The data also suggested that the more the brain activity synchronizes the more the mental state of the individuals overlap. We also found significantly synchronized brain activity between speaker and listeners. Specifically 1) listeners’ brain activity within the speech processing cortices was synchronized to speaker’s brain activity with a time lag, indicating that listeners’ speech comprehension processes replicated the speaker’s speech production processes; and 2) listeners’ frontal cortical activity was synchronized to speaker’s later brain activity, that is, listeners preceded the speaker, indicating that speech content is predicted by the listeners based on the context.

Future challenges. Future research could target artificial intelligence development that is capable of human-like communication. To achieve this, the simultaneous recording of brain activity from listener and speaker is needed together with efficiency of the communication. These data could be then modelled via AI to detect biomarkers of communication efficiency. In general, neurotechnology has been rapidly developing within and outside of research and in clinical fields thus it is time for re-conceptualizing the corresponding human right law in order to avoid unwanted consequences of technological applications.

Open access