Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Ágnes Mosolygó x
Clear All Modify Search

Crocus taxonomy has until now been based primarily on morphology, taking chromosome numbers into consideration. The genetics and genome structure of the genus, the relationships and diversity within the genus are not well known. Amplified fragment length polymorphism (AFLP) is a whole genome approach to study genetic variation that is gaining in popularity for lower-level systematics. The present study employed the AFLP technique for analyzing relationships among taxa of the Crocus genus (particularly the Crocus vernus aggregate) with Carpathian Basin origin. The molecular variance obtained was based on amplification, separation and detection of EcoRI and Tru1I double-digested Crocus spp. genomic DNAs. Our results confirm the relatedness of C. tommasinianus, C. vittatus and C. heuffelianus at the Verni series of the Crocus genus. C. banaticus is taxonomically isolated as the sole member of the subgenus Crociris based on unique morphological features, but the difference is not convincing from AFLP data. The second interesting AFLP analysis result is the position of C. scepusiensis which separated it from the Crocus vernus aggregate.

Restricted access

Waterbloom samples of Microcystis aeruginosa and Planktothrix agardhii were collected from a variety of ponds, lakes and reservoirs in Hungary. Samples were tested with matrix-assisted laser desorption/ionization — time-of-flight mass spectrometry (MALDI-TOF MS) to identify the microcystin forms. The concentration of the microcystins was measured with capillary electrophoresis and the toxicity was tested by sinapis test. DNA was extracted from the samples and tested using a range of primers linked to the biosynthesis of microcystin. All of the fourteen collected samples gave positive results for the presence of the mcy genes with PCR products with sizes between of 425 and 955 bp, respectively, indicating the presence of the genes implicated in the production of microcystins. The results showed that a wide range of microcystin (MC) forms were detected in the Microcystis containing samples, among which MC-LR, -RR, and -YR were the most common. The highest MC concentration was 15,701 mg g−1, which was detected in an angling pond. The samples containing Planktothrix agardhii were less toxic, and the most common form in this species was the Asp3-MC-LR.

Restricted access
Acta Biologica Hungarica
Authors: Anna Resetár, Zita Demeter, Emese Ficsor, Andrea Balázs, Ágnes Mosolygó, Éva Szőke, S. Gonda, L. Papp, G. Surányi and C. Máthé

In this study, we report on the production of bulb scale-derived tissue cultures capable of efficient shoot and plant regeneration in three genotypes of snowdrop (Galanthus nivalis L., Amaryllidaceae), a protected ornamental plant. For culture line A, high auxin and low cytokinin concentration is required for callus production and plant regeneration. The type of auxin is of key importance: α-naphthaleneacetic acid (NAA) in combination with indole-3-acetic acid (IAA) at concentrations of 2 mg L−1 or 2–10 mg L−1 NAA with 1 mg L−1 N6-benzyladenine (BA), a cytokinin on full-strength media are required for regeneration. Cultures showing regeneration were embryogenic. When lines B and C were induced and maintained with 2 mg L−1 NAA and 1 mg L−1 BA, they produced mature bulblets with shoots, without roots. Line A produced immature bulblets with shoots under the above culture condition. Amplified Fragment Length Polymorphism (AFLP) analysis showed that (i) genetic differences between line A and its bulb explants were not significant, therefore these tissue cultures are suitable for germplasm preservation, and (ii) different morphogenetic responses of lines A, B and C originated from genetic differences. Culture line A is suitable for field-growing, cultivation and germplasm preservation of G. nivalis and for the production of Amaryllidaceae alkaloids.

Restricted access
Acta Microbiologica et Immunologica Hungarica
Authors: Emese Balogh, Tímea Mosolygó, Hilda Tiricz, Ágnes Szabó, Adrienn Karai, Fanni Kerekes, Dezső Virók, Éva Kondorosi and Katalin Burián

Even in asymptomatic cases of Chlamydia trachomatis infection, the aim of the antibiotic strategy is eradication of the pathogen so as to avoid the severe late sequelae, such as pelvic inflammatory disease, ectopic pregnancy, and tubal infertility. Although first-line antimicrobial agents have been demonstrated to be predominantly successful in the treatment of C. trachomatis infection, treatment failures have been observed in some cases. Rich source of antimicrobial peptides was recently discovered in Medicago species, which act in plants as differentiation factors of the endosymbiotic bacterium partner. Several of these symbiotic plant peptides have proved to be potent killers of various bacteria in vitro. We show here that 7 of 11 peptides tested exhibited antimicrobial activity against C. trachomatis D, and that the killing activity of these peptides is most likely due to their interaction with specific bacterial targets.

Restricted access