Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Árpád Z. Kiss x
  • Refine by Access: All Content x
Clear All Modify Search
Acta Geologica Hungarica
Authors: Péter Rózsa, Gyula Szö?r, Zoltán Elekes, Bernard Gratuze, Imre Uzonyi, and Árpád Z. Kiss

Obsidian samples from different localities of various geologic settings (Armenia, Hungary, Iceland, Mexico, Slovakia and Turkey) were analyzed by particle induced gamma-ray emission (PIGE) technique and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Samples from Mexico and Iceland show higher alkali and REE content as well as higher Nb and Ta abundances than the other samples. Discrimination diagrams show samples from Mexico and Iceland to belong to WPG. The position of the samples from the Tokaj Mts is also definite, and it corresponds to the expectation (VAG or VAG+syn-COLG fields). Using a Li-B diagram the obsidian samples can be distinguished according to their geographic distribution. By means of a Ce-Ti diagram, obsidian from the Tokaj Mts can be divided into three groups that may correspond to the archeometrical C2E, C2T and C1 groups. Phenocrysts in the obsidian samples from the Tokaj Mts, and the Aragats Mts (Armenia) were detected and analyzed by micro-PIXE (proton induced X-ray emission) method. In this way silicate minerals (zircon, pyroxene, biotite, plagioclase feldspars), ore minerals (chalcopyrite, pyrrhotite, pyrite), and other non-silicate mineral (anhydrite) were identified.

Restricted access
Acta Geologica Hungarica
Authors: Gyula Szöőr, Péter Rózsa, Bart Vekemans, László Vincze, Freddy Adams, Imre Uzonyi, Árpád Z. Kiss, and Imre Beszeda

Impact material, especially magnetizable tiny grains (spherules, globules and platelets) of Barringer Meteor Crater (Arizona) was studied by combined nuclear analytical techniques. The samples were analyzed first by micro-proton-induced X-ray emission (PIXE) and deuteron-induced gamma-ray emission (DIGE) methods. In this way it was possible to determine the distribution of elements down to carbon. Using micro-synchrotron radiation X-ray fluorescence technique (SRXRF) we could determine medium and high atomic number trace elements such as the platinum-group metals. Our methodological developments made it possible for the first time to carry out quantitative analysis for more than 40 elements, providing new perspectives for the interpretation of the impact materials. Various compositions of the findings around the Barringer Crater were compared to analytical data of similar objects found in Carpathian Basin to elucidate their origin. This paper summarizes the more important results obtained by using ion beam microanalytical techniques.

Restricted access