Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: А. Ф. Леонтьев x
  • Refine by Access: All Content x
Clear All Modify Search
LetD be an infinite convex domain and letF(z) bean analytic function inD. It is proved that there exist a functionf(z) regular inD and continuous in¯D+ (except for infinity) and an entire function of growth order at most 1 and of minimal type, such that
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$F(z) = \sum\limits_{k = 0}^\infty {c_k f^{(k)} (z), z \in D.}$$ \end{document}
Restricted access
The class is introduced and thoroughly studied in the paper. By definition,H if there exist sequences {А n } and {μ n }, ¦μ n ¦ ↑ ∞ (depending onH(ϕ)) such that
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathop {\lim \sup }\limits_{t \to \infty } \frac{{\ln \Phi \left( {re^{i\varphi } } \right)}}{{r^{\varrho _1 } }} = H\left( \varphi \right), \Phi \left( z \right) = \mathop \Sigma \limits_{k = 1}^\infty \left| {A_k E_\varrho \left( {\lambda _k z} \right)} \right|,$$ \end{document}
whereE ϱ (z) is a Mittag—Leffler function andϱ 1>ϱ>1/2. The significance of the class is confirmed by the following theorem. For each functionH there exists a sequence {λ n } with the following property: every entire functionF(z) of orderϱ 1 with the growth indicatorh F (ϕ)< <H(ϕ) can be expanded into the series
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$F\left( z \right) = \mathop \Sigma \limits_{n = 1}^\infty a_n E_\varrho \left( {\lambda _n z} \right),$$ \end{document}
furthermore,
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathop {\lim sup}\limits_{r \to \infty } \frac{{\ln \Phi \left( {re^{i\varphi } } \right)}}{{r^{\varrho 1} }}< H\left( \varphi \right), \Phi \left( z \right) = \mathop \Sigma \limits_{n = 1}^\infty \left| {a_n E_\varrho \left( {\lambda _n z} \right)} \right|.$$ \end{document}
Restricted access