Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: М. Шеремета x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Пусть
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$f(z) = \mathop \sum \limits_{k = 0}^\infty a_k z^k ,a_0 \ne 0, a_k \geqq 0 (k \geqq 0)$$ \end{document}
— целая функци я,π n — класс обыкновен ных алгебраических мног очленов степени не вы ше
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$n,a \lambda _n (f) = \mathop {\inf }\limits_{p \in \pi _n } \mathop {\sup }\limits_{x \geqq 0} |1/f(x) - 1/p(x)|$$ \end{document}
. П. Эрдеш и А. Редди высказали пр едположение, что еслиf(z) имеет порядок ϱ&(0, ∞) и
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathop {\lim sup}\limits_{n \to \infty } \lambda _n^{1/n} (f)< 1, TO \mathop {\lim inf}\limits_{n \to \infty } \lambda _n^{1/n} (f) > 0$$ \end{document}
В данной статье показ ано, что для целой функ ции
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$E_\omega (z) = \mathop \sum \limits_{n = 0}^\infty \frac{{z^n }}{{\Gamma (1 + n\omega (n))}}$$ \end{document}
, где
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\lambda _n^{1/n} (E_\omega ) \leqq \exp \left\{ { - \frac{{\omega (n)}}{{e + 1}}} \right\}$$ \end{document}
, т.е.
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathop {\lim sup}\limits_{n \to \infty } \lambda _n^{1/n} (E_\omega ) \leqq \exp \left\{ { - \frac{1}{{\rho (e + 1)}}} \right\}< 1, a \mathop {\lim inf}\limits_{n \to \infty } \lambda _n^{1/n} (E_\omega ) = 0$$ \end{document}
. ФункцияE ω(z) имеет порядок ϱ.
Restricted access