Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: A. Anton x
  • Refine by Access: All Content x
Clear All Modify Search

Wheat flour tortillas are the fastest growing segment of the North American baking industry. As this market grows, the search for healthier alternatives to traditional foods also increases. Nutritionally, flour tortillas are rich in carbohydrates that generate a high glycemic index subsequent to ingestion, demonstrating a behaviour similar to white bread. Hence, the formulation of more nutritious tortillas, with higher levels of protein, dietary fiber and antioxidants, appears to be promising. Although the number of publications concerning the nutritional improvement of flour tortillas is limited, attempts utilizing soybean, whole wheat, and triticale flours have been reported. Additionally, as different ingredients are added to traditional formulations, the texture is very likely to be affected, as are the shelf-life and other sensory properties. Among other additives, hydrocolloids have been reported to improve the textural qualities of bakery goods and flour tortillas. They comprise a number of water-soluble polysaccharides with varied chemical structures providing a range of functional properties that make them suitable to this application. This paper discusses the tortilla market, reviews research attempting to develop novel and nutritious products, and discusses the application of hydrocoloids as texture improvers.

Restricted access

Arbuscular mycorrhizal (AM) fungi are obligatory biotrophic symbionts living in the roots of most terrestrial plants. AM fungi (AMF) have a positive effect on plant growth and plant nutrition, especially under stress conditions.  The aim of the present study was to observe the relationship between the mycorrhizal dependency and nutrient uptake of host plants and the rate of AMF colonization in a pot experiment. The degree of host growth responses to AMF colonization is expressed as mycorrhizal dependency (MD).  The pot trial was set up with a sterilized calcareous chernozem soil from Nagyhörcsök (Hungary) in a growth chamber under controlled climatic conditions. Tomato (Lycopersicon esculentum L.) plants were inoculated with Glomus claroideum (BEG23) , Glomus fasciculatum (BEG53), Glomus geosporum (BEG11), Glomus mosseae (BEG12) strains and a Glomus mosseae AMF culture produced by authors. The dry biomass production, the micro- and macronutrient concentrations of the shoots and the parameters of the mycorrhizal infection were determined. Each AM fungi species or isolate caused different and distinct changes in host plant growth and nutrient uptake. The biomass production of tomato increased significantly in the presence of AM symbiosis. The mean values of MD, calculated from shoot dry matter, varied between 36% and 55%. Mycorrhizal inoculation improved the P, N and K uptake of tomato. The highest values for root colonization, frequency of infection or arbuscular richness were found in the root of tomato inoculated with the two Glomus mosseae strains. The highest MD and nutrient contents appeared in the shoot of tomato treated withour Glomus mosseae strain, which may indicate a stronger affinity (compatibility) between the symbiotic partners. The results confirmed that the selected AMF strains are applicable in sustainable horticulture.

Restricted access

The effect of the porcine myogenin (Myog) 3' polymorphism on birth weight, growth rate, carcass weight, lean weight, lean meat percentage and backfat thickness has been investigated in Hungarian Large White pigs. MYOG genotypes were determined by PCR-RFLP assay. The obtained MYOGA frequency value was 0.6275. Due to the small number of BB piglets the effect of the MYOG genotypes on birth weight was not significant; however, an increasing tendency was observed from genotype AA to BB. The growth rate difference between MYOG genotypes was significant: BB animals showed the highest growth rate values during the fattening period. Since few results are available on the possible use of MYOG gene polymorphism in selection to improve carcass and growth traits, by this study the authors hope to provide additional data on this particular subject.

Restricted access

The applicability of the chloroform fumigation extraction method was tested for detecting soil microbial biomass and p-nitrophenyl phosphate (pNP) for acid phosphatase activity to study their response to heavy metal pollution in the rhizosphere soil of planted willow (Salix sp.).   The experimental site was located in the Toka River Valley (North-East Hungary) along the riverbank that had been severely polluted by flooding. The river had transported heavy metal and arsenic ions from several heaps deposited imprudently near a historic lead and zinc mining site. A phytoremediation experiment was set up by planting willow trees with the aim of extracting toxic elements from the soil. A strong significant difference between the control and the metal-contaminated rhizosphere soils resulted much lower microbial biomass values in the polluted soils, which suggests disturbance in the organic matter transformation dynamics. A significant increase in acid phosphomonoesterase activity was determined in the soil due to the pollution. The phosphatase enzyme production of living organisms may be stimulated by the measured higher moisture content and significantly lower LE-soluble phosphorus content of the polluted soil samples. The correlation established between soil water content and phosphatase activity was positive (r = +0.85), while that between LE-P content and phosphatase activity was negative (r = -0.69). The most important stimulating effect was attributable to the lower available phosphorus content, resulting from the heavy metal (Pb, Zn) content of polluted soil. Both measured biological parameters therefore were suitable for indicating soil pollution, but the change was adverse, the biomass decreased, while phosphatase activity increased. Microbial biomass and phosphatase activity were not correlated, indicating the different account of ecological factors that alter the biological properties of a soil.

Restricted access

The chemical and microbiological changes during spontaneous <italic>budu</italic> fermentation were elucidated on monthly basis (1–12 months). A significant increase (P<0.05) in pH, acidity, soluble protein, total protein, and moisture content was observed during <italic>budu</italic> fermentation, except for the fat content. The total microbial load decreased gradually from the initial of 6.13±0.01 to 3.45±0.13 log CFU g−1 after 12 months of fermentation. Overall, 150 isolates were identified, with a majority of bacteria (77%), followed by yeasts (12%) and 11% of unconfirmed species. Micrococcus luteus was the predominant strain that initiated the fermentation before it was replaced by Staphylococcus arlettae that exists throughout the fermentation. This study confirmed that lactic acid bacteria and yeasts often coexist with other microorganisms, even though a microbiological succession usually takes place both between and within species, which shaped the chemical and sensory characteristics of the final product. In addition, some of the isolates could be potentially valuable as starter cultures for further improved and controllable <italic>budu</italic> fermentation.

Restricted access
Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors:
C. Gascó
,
M. Antón
,
A. Espinosa
,
A. Aragón
,
A. Alvárez
,
N. Navarro
, and
E. García-Toraño
Restricted access

Total mineral uptake capacity of zucchini (Cucurbita pepo L. cv. giromontiina) grown in an experimental field at Gödöllő was studied. The mineral content of the soil (brown acidic sandy forest soil) showed unexpectedly high content (mg kg−1 DW) of Ba (95.5), Cr (32.9), Ni (27.8), Pb (15.4) and Zn (53.3). Boron (B) concentration of the soil was relatively low (7.1 mg kg−1 DW), but its bioaccumulation content in root, (2.5) shoot, (33.1) and leaf (50.1) tissues of the plant (mg kg−1 DW). Zinc (Zn) was also bioaccumulated in the plant with contents (mg kg−1 DW) of 47.1 (roots), 23.0 (shoots) and 56.1 (leaves) as compared with 53.3 (in the soil). Toxic element exclusion was observed in zucchini (mg kg−1 DW) concerning Ba (29.0), Co (0.2), Cr (5.3), Ni (5.8) and Pb (3.4) measured in the roots when compared with their concentrations in the soil: Ba (95.5), Co (10.2), Cr (32.9), Ni (27.8) and Pb (15.4). In silico sequence analyses of nucleotide and amino acid sequences of aquaporins (NIP, TIP, SIP and Si-TRP), boron-exporters (BOR), and rbcL of cpDNA revealed plant species with high sequence similarities to the sequences of Cucurbits, which predicted additional plants with intensive mineral (B and Zn) uptake capacity, similar to Cucurbits with phytoextraction potential.

Restricted access

We used an alternative approach, loop-mediated isothermal amplification, to detect Mangalitza component in food products, and it has been compared to an established Recombinase Polymerase Amplification test. The correlation between the assays was significant (P<0.01). Linear determination coefficient between the assays was 0.993 and level of diagnostic agreement was high (Kappa=0.971).

Previously, a real-time PCR method based on TaqMan probe was developed (Szántó-Egész et al., 2013) for detection of Mangalitza meat in food products, using a Mangalitza specific sequence. Other Mangalitza specific sequences suitable for the same purpose are also in use (V. Stéger, personal communication).

Approaches like real-time monitoring of accumulation of the specific DNA product usually require specialised laboratory equipment. For Mangalitza detection, portable Recombinase Polymerase Amplification (RPA) approach has been developed (Szántó-Egész et al., 2016), which requires a device capable of maintaining 39 °C and a lateral flow strip with easy yes/no indication of the successful amplification.

We wanted to develop another fast, non-PCR based test with minimal laboratory requirement to provide a third possibility to detect Mangalitza component in food.

Open access
Journal of Behavioral Addictions
Authors:
Astrid Müller
,
Nora M. Laskowski
,
Tobias A. Thomas
,
Stephanie Antons
,
Nadja Tahmassebi
,
Sabine Steins-Loeber
,
Matthias Brand
, and
Ekaterini Georgiadou

Abstract

Background and aims

Compulsive buying-shopping disorder (CBSD) is mentioned as an example of other specified impulse control disorders in the ICD-11 coding tool, highlighting its clinical relevance and need for treatment. The aim of the present work was to provide a systematic update on treatment studies for CBSD, with a particular focus on online CBSD.

Method

The preregistered systematic review (PROSPERO, CRD42021257379) was performed in accordance with the PRISMA 2020 statement. A literature search was conducted using the PubMed, Scopus, Web of Science and PsycInfo databases. Original research published between January 2000 and December 2022 was included. Risk of reporting bias was evaluated with the CONSORT guideline for randomized controlled trials. Effect sizes for primary CBSD outcomes were calculated.

Results

Thirteen studies were included (psychotherapy: 2 open, 4 waitlist control design; medication: 2 open, 3 placebo-controlled, 2 open-label phase followed by a double-blind discontinuation phase; participants treatment/control 349/149). None of the studies addressed online CBSD. Psychotherapy studies suggest that group cognitive-behavioral therapy is effective in reducing CBSD symptoms. Pharmacological studies with selective serotonin re-uptake inhibitors or topiramate did not indicate superiority over placebo. Predictors of treatment outcome were rarely examined, mechanisms of change were not studied at all. Risk of reporting bias was high in most studies.

Discussion

Poor methodological and low quality of reporting of included studies reduce the reliability of conclusions. There is a lack of studies targeting online CBSD. More high-quality treatment research is needed with more emphasis on the CBSD subtype and mechanisms of change.

Open access