Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: A. Bezdek x
Clear All Modify Search

Abstract  

A set of closed unit disks in the Euclidean plane is said to be double-saturated packing if no two disks have inner points in common and any closed unit disk intersects at least two disks of the set. We prove that the density of a double saturated packing of unit disks is ≥

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\geqslant \pi /\sqrt {27}$$ \end{document}
and the lower bound is attained by the family of disks inscribed into the faces of the regular triangular tiling.

Restricted access

Summary  

The central problem of this paper is the question of denseness of those planar point sets \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(\mathcal{P}\) \end{document}, not a subset of a line, which have the property that for every three noncollinear points in \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(\mathcal{P}\) \end{document}, a specific triangle center (incenter (IC), circumcenter (CC), orthocenter (OC) resp.) is also in the set \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(\mathcal{P}\) \end{document}. The IC and CC versions were settled before. First we generalize and solve the CC problem in higher dimensions. Then we solve the OC problem in the plane essentially proving that \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(\mathcal{P}\) \end{document} is either a dense point set of the plane or it is a subset of a rectangular hyperbola. In the latter case it is either a dense subset or it is a special discrete subset of a rectangular hyperbola.

Restricted access